الصفحات

الجمعة، 5 يوليو 2019

Production of Digital Climatic Maps Using Geostatistical Techniques


Production of Digital Climatic Maps Using Geostatistical Techniques

Hussain Zaydan Ali

Ministry of Science and Technology-Baghdad-Iraq

Saad H. Farraj

Iraqi Meteorological Organization and Seismology-Iraq 


JOURNAL OF MADENAT ALELEM COLLEGE -  City College of Science University -  Volume: 6 Issue: 2 - 2014 - Pages: 22-32 

Abstract

  There is an increasing demand for girded datasets of climate variables from fields such as hydrology, ecology, agriculture, climate change research and climate model verification. The girded climate data sets developed are very suitable for digital data storage and access. The temperature is the most important climatic elements. It effects on the various human activities. There is a mutual relationship between temperature and climate. It is the base motivation engine for the rest of the climate elements. Consequently this paper attempted to make spatial interpolation, of annual and monthly maximum temperature in Iraq for the period from 1970 to 2010 using spatial geostatistics tools in ArcGIS Version 9.3. This paper presents a methodology to produce accurate climatic maps. Validation of produced maps was examined by different criteria.

Keywords: Geographic information system, Geostatistical analyst, Kriging, Temperature.


إنتاج خرائط المناخ الرقمية باستخدام التقانات الجيوإحصائية

 حســين زيــدان علي 

وزارة العلوم والتكنولوجيا - بغـداد - العـراق
 
سعــد حلبوص فــرج

الهـيئة العامة للأنواء الجوية والرصد الزلزالي - العـراق 

مجلة كلية مدينة العلم الجامعة - كلية مدينة العلم الجامعة - المجلد 6 - العدد 2 -  2014 - ص ص 22 - 32


الخلاصة

   يوجد طلب متزايد على مجاميع البيانات الشبكية للمتغيرات المناخية من حقول المعرفة المتعددة مثل الهيدرولوجي ,علم البيئة ,الزراعة , بحوث التغيرات المناخية ,والتحقق من موديلات المناخ. إن مجاميع البيانات المناخية الشبكية المطورة تكون مناسبة للغاية لأغراض خزن البيانات الرقمية والوصول إليها , و تعد درجة الحرارة أكثر عناصر المناخ أهمية بسبب تأثيرها على النشاطات البشرية المختلفة. توجد علاقات متبادلة بين درجة الحرارة والمناخ لكونها المحرك الأساس لبقية عناصر المناخ و نتيجة لذلك فان البحث الحالي يحاول أن يعمل استنباط مكاني لمعدلات درجة الحرارة العظمى الشهرية والسنوية بالعراق للفترة من 1970 ولغاية 2010 باستخدام الأدوات الجيواحصائية المكانية في برنامج ArcGIS النسخة 9.3. يقدم هذا البحث طرائق لإنتاج خرائط مناخ دقيقة, وقد  تم تدقيق الخرائط المنتجة باختبار معايير مختلفة.

كلمات مفتاحيه : نظام المعلومات الجغرافي,المحلل الجيوإحصائي ,kriging, درجة الحرارة.



Figure (2): Maximum Temperature, First Period, January, Using Ordinary Kriging, Spherical Model



Figure (3): Maximum Temperature, First Period, July, Using Using Ordinary Kriging, Spherical Model.


Figure (4): Maximum Temperature, Second Period, January, Using Ordinary Kriging, Spherical Model.



Figure (5): Maximum Temperature, Second Period, July, Using Ordinary Kriging, Spherical Model.



Figure (6): Maximum Temperature, Third Period, January, Using Ordinary Kriging, Spherical Model.



Figure (7): Maximum Temperature, Third Period, July, Using Ordinary Kriging, Spherical Model.


CONCLUSION:

  Creation of digital grid maps makes it possible to obtain climatic information at any point, whether there is a weather station or not. Multiple factors condition the difficulty of map creation, such as the location of the site samples, spatial density, spatial variability etc. Interpolating values of climate variables from measurement stations to large areas istherefore fundamental and requires minimizing the extent of interpolation errors by using a suitableinterpolation method. Given a set of meteorological data, it's possible to use a variety of stochasticand deterministic interpolation methods to estimate meteorological variables at unsampledlocations.

REFERENCES:
1. Burrough, P., Mc-Donnell, R. (Ed.). (1998) Principles of Geographical Information Systems. Oxford University Press.

2. Cressie, N., (1985) Fitting VariogramModels by Weighted Least Squares, Mathematical Geology, 17(5), 563-586.

3. Gyalistras D. (2003) Development and Validation of a High-resolution Monthly Gridded Temperature and Precipitation Data Set for Switzerland (1951–2000). Climate Research 25: 55–83.

4. Ninyerola M, Pons X, Roure MJ. (2000) A Methodological Approach of Climatologically Modeling of Air Temperature and Precipitation Through GIS Techniques. International Journal of Climatology 20:1823–1841.

5. Goovaerts P. (1999)Geostatistics in Soil Science. Geoderma 89:1–45.

6. Johnston, K., Ver Hoef, J., M., Krivoruchko, K., and Lukas, N. (2003)Using ArcGisGeostatistical Analyst, ESRI, 300.

7. Zhu HZ, Luo TX, Daly C. (2003) Validation of Simulated Grid Data Sets of China’s Temperature and Precipitation With High Spatial Resolution. Geographical Research 22: 349–359.

8. Isaaks, E.,Srivastava, R. (Ed.). (1989) An Introduction to Applied Geostatistics. OxfordUniversity Press.

9. Kravchenko, A., Bullock, D. (1999) A Comparative Study of Interpolation Methods for Mapping Soil Properties. Agronomy Journal, 91, 393-400.

10. Wahba G, Wendelberger J. (1980) Some New Mathematical Methods for VariationalObjective Analysis Using Splines and Cross-validation. Monthly Weather Review 108: 1122–1145.

11. Webster, R., and M.A. Oliver, (1992) Sample Adequately to Estimate Variograms of Soil Properties, Journal of Soil Science, 43(2), 177-192.

12. Lark, R.M., (2002) Optimized Spatial Sampling of Soil for Estimation of the Variogram by Maximum Likelihood, Geoderma, 105(1-2), 49-80.

13. Zimmerman, D., Pavlik, C., Ruggles, A., Armstrong, M. (1999) An Experimental Comparison of Ordinary and UK and Inverse Distance Weighting. Mathematical Geology, 31: 370-395.

14. Warrick, A.W., and D.E. Myers, (1987) Optimization of Sampling Locations for VariogramCalculations, Water Resources Research, 23(3): 496-500.



للتحميل اضغط                    هنا


للقراءة والتحميل اضغط       هنا


ليست هناك تعليقات:

إرسال تعليق