التسميات

الاثنين، 5 فبراير 2018

New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences‏


New perspectives on the use of Geographical Information Systems (GIS) in environmental health sciences‏

Thomas Kistemanna , Friederike Dangendorfa , J¸rgen Schweikartb

a Institute for Hygiene and Public Health, University of Bonn, Bonn, Germany b Department for Cartography, University for Applied Sciences, Berlin, Germany

International Journal of Hygiene and Environmental Health , Volume 205, Issue 3, 2002, Pages 169-181

Abstract 

   At first glance, the domain of health is no typical area to applicate Geographical Information Systems (GIS). Nevertheless, the recent development clearly shows that also within the domains of environmental health, disease ecology and public health GIS have become an indispensable tool for processing, analysing and visualising spatial data. In the field of geographical epidemiology, GIS are used for drawing up disease maps and for ecological analysis. The striking advantages of GIS for the disease mapping process are the considerably simplified generation and variation of maps as well as a broader variety in terms of determining areal units. In the frame of ecological analysis, GIS can significantly assist with the assessment of the distribution of health-relevant environmental factors via interpolation and modelling. On the other hand, the GIS-supported methods for the detection of striking spatial patterns of disease distribution need to be much improved. An important topic in this respect is the integration of the time dimension. The increasing use of remote sensing as well as the integration into internet functionalities will stimulate the application of GIS in the field of Environmental Health Sciences (EHS). In future, the integration and analysis of health-relevant data in one single data system will open up many new research opportunities.

Key words GIS-environmental health sciences -medical geography - disease mapping- ecological  studies - remote sensing


Introduction

Geographical Information Systems

      According to Bill (1999) a Geographical Information System (GIS) is a computer-supported system consisting of hardware, software, data and the corresponding applications. By means of GIS, data can be digitally recorded and edited, stored and reorganised, shaped and analysed as well as presented in an alphanumerical and graphic mode. In its definition the WHO (1999) states another essential: the trained staff. Basically, GIS has two different types of data: on one hand geometric data which are the co-ordinates of points defining also curves and areas and on the other hand the attribute data containing the factual information

The functionalities of GIS include, among other things, the following selected aspects (Scholten and de Lepper, 1991; Briggs and Elliot 1995; Clarke et al., 1996): 

- Data capture: data input by user employing scanner, digitizer tablet, keyboard etc., or data import from digital sources. 

- Data check: plausibility, revision and completion. 

- Data integration: transfer of data sets into a consistent geographic data structure by generalisation, co-ordinates transformation resp. translation etc.

- Data storage: spatial data are stored as grid or vector data. Advanced GIS can process both types of data in hybrid systems. Normally, the data are stored in intrasystem data bases.  Data retrieval: basic functions for a user-defined query of data bases. 

- Data analysis: GIS provides a broad range of tools to analyse the database. In this respect, all GISfunctionalities can be used, in particular the visualisation methods (Table 1)

- Data display: the most important display formats of GIS are maps. But also tables and graphics are possible formats for the presentation of results.


  The application of GIS does by no means overcome two major concerns of any empirical research: data availability and data quality. Data collecting is both time-consuming and expensive, and GIS offers some helpful tools for integration and matching of data that are already available. An increasing amount of datasets is becoming available as public domain (Clarke et al., 1996). However, if pre-collected data are used, it is often difficult to get information about their quality and the methods used for generation. Furthermore, the intended data use is regularly different from that intended by the researcher. Thus, often neither spatial boundaries and resolution are those desired by the researcher, nor are all the items present.

   There is currently a movement towards regarding GIS as a science (Geographic Information Science) rather than simply a technology (Goodchild, 2000, Haining, 2001). In this broader understanding GIS comprises geographical information systems and geographical concepts as well as methods for spatial analyses.





Introduction

   The trends of the last decades and their effects in the fields of hardware, software and network technology, in particular in the internet domain, have created the prerequisites for a broad acceptance of GIS. Not only experts are nowadays able to use these complex systems as the user-friendly possibilities of advanced GIS versions have smoothed the way for its wide-spread utilisation. Today, each scientist and each planner is potentially able to process spacerelated data (Goodchild, 1998).

  Besides, several practical requirements have to be complied with. The implementation of GIS consists of many worksteps which are partly very labourintensive. All objects of the system must be registered and geo-referenced, i.e., geometry and attributes are to be integrated. Thereby, it can be started from the assumption that the relation between data acquisition costs and all remaining costs ranges between 5: 1 up to 10: 1. Neither the set-up phase nor the data analysis offer many opportunities for automation. The interaction with the user is indispensable (Klemmer and Spranz, 1997). In particular, with regard to the complex topics related to the health sector, no satisfactory results can be achieved without the interaction of the user.

  Reflecting the high input which is necessary for the set-up of GIS, the critical question concerning the added value arises. One has to wonder whether really new possibilities have been created or whether only new methods have been developed to generate and to analyse maps in a way as it had been done already 150 years ago. There is agreement on the point that GIS, due to its central features, does indeed open up new possibilities in terms of processing research issues in a way that has not been possible before. GIS does not mean digital cartography but is indeed an information and analysing tool which permits the processing of space-related data. Certainly the map itself keeps on playing a prominent role and is, of course, the most frequently used output of GIS. On the basis of maps, regional interconnections and relations can be revealed, identified and imparted. The information provided by the map is influenced by a multitude of factors that have to be taken into account. The distribution of basic variables, particularly those related to the population, may influence the appearance of a map to a considerable extent. Factors not depending on the data pool, such as map layout or display method of the statistical data, should not be underestimated since they may manipulate the interpretation (Wilkinson et al., 1998). The influence of visualisation should be considered at any rate. In many cases, a low-quality or even wrong map may lead to a misinterpretation of facts (Schweikart, 1999).

  The setting up of a topical map with a definite content by using GIS is not a methodological revolution but means nothing more than a change of tool. Digital maps can be designed by means of more simple methods, and the strong point of GIS is not the graphic display. The reality of map design is, however, completely different: at the beginning there are a new idea and statistical data. During a scientifically creative process, space-related and health-relevant relations are analysed and finally visualised by using a whole package of different methods: varied pieces of information are overlapped and clipped, data are statistically evaluated, indices are developed and calculated, maps are iteratively discussed, analysed and further on developed. Only at the end of a long process the maps are finalised. The way how a map is generated is therefore most essential: the explorative handling of the data, the continuous development of the original idea and the generating of hypotheses. This process can be realised most effectively by GIS. Already the standard functionalities of GIS extend the conventional analysing methods in terms of leading to innovative results.

  Today, the most ambitious approaches to apply GIS to health-relevant topics exist in the United Kingdom and in the US. A multitude of publications show applications in numerous fields of epidemiology and health system research. GIS can support the geographic epidemiology to a considerable extent and may inspire its development (Scholten and de Lepper 1991; Briggs and Elliot, 1995; O'Dwyer, 1998). There is still a high potential for possible applications. Within computerised hospital information systems, for instance, a new large-scale GIS application for health issues arises. The environment of health care settings is rather special, but highly relevant to both patients' and personnel's health. GIS may support surveillance and prevention of nosocomial infections as well as detection and investigation of outbreaks (Kistemann et al., 2000).

    The implementation of spatial-statistical methods for cluster identification and hypothesis testing is currently not very satisfactory although the potential of GIS in this field is seen to be substantial. Integration of time dimension remains to be another, yet unsolved, problem.

   Undoubtedly, GIS will rapidly disseminate in the fields of spatial environmental health sciences and public health. Availability of huge environmental data quantities from remote sensing as well as integration of GIS into internet-functionalities will contribute substantially to the growing acceptance of GIS within health sciences. There is, however, a risk that the easy and quick application of geographic-epidemiological methods may promote the distribution of incorrect conclusions if the underlying theory and methodological restrictions are not sufficiently considered (Briggs and Elliot, 1995).


Reference

Adams, P. C.: A reconsideration of personal boundaries in space-time. Annals of the Association of American Geographers 85, 267 - 285 (1995). 

Asche, H.: Kartographische Informationsverarbeitung in Datennetzen-Prinzipien, Produkte, Perspektiven. In: Web.Mapping 1. Raumbezogene Information und Kommunikation im Internet (C. Herrmann, H. Asche, eds.), Wichmann, Heidelberg (2001). 

Barrett, F. A.: Disease & Geography - the history of an idea. Becker Ass, Toronto. (Geographical Monographs, 23) (2000a).

Barrett, F. A.: Finke's 1792 map of human diseases: the first world disease map? Soc Sci Med 50, 915 - 921 (2000b). 

Beck, L. R., Lobitz, B. M., Wood, B. L.: Remote sensing and human health: new sensors and new opportunities. Emerg Infect Dis 6(3), 217 - 227 (2000). 

Beck, L. R., Rodriguez, M. H., Dister, S. W., Rodriguez, A. D., Rejmankova, E., Ulloa, A., Meza, R. A., Roberts, D. R., Paris, J. F., Spanner, M. A. et al: Remote sensing as a landscape epidemiologic tool to identify villages at high risk for malaria transmission. Am J Trop Med Hyg 51, 271 - 280 (1994). 

Beck, L. R., Rodriguez, M. H., Dister, S. W., Rodriguez, A. D., Washino, R. K., Roberts, D. R., Spanner, M. A.: Assessment of a remote sensing-based model for predicting malaria transmission risk in villages of Chiapas, Mexico. Am J Trop Med Hyg 56, 99-106 (1997). 

Becker, N., Wahrendorf, J.: Krebsatlas der Bundesrepublik Deutschland - 1981-1990, 3rd ed., Springer, Heidelberg (1998). 

Bentham. G., Haynes, R. Lovett, A: Introduction. Soc Sci Med 33, 4, ix - x (1991). 

Bill, R.: Grundlagen der Geo-Informationssysteme. Band 1. Hardware, Software und Daten. Wichmann, Heidelberg. 4th ed. (1999). 

Briggs, D. J., Elliott, P.: The use of geographical information systems in studies on environment and health. World Health Stat. Quarterly 48, 85 - 94 (1995). 

Brody, H., Rip, M. R., Vinten-Johansen, P., Paneth, N., Rachman, S.: Map-making and myth-making in Broad Street: the London cholera epidemic, 1854. The Lancet 356, 64 -68 (2000). 

Brooker, S., Michael, E.: The potential of geographical information systems and remote sensing in the epidemiology and control of human helminth infections. Adv Parasitol 47, 245 - 288 (2000). 

Clarke, K. C., McLafferty, S. L. Tempalski, B. J.: On epidemiology and geographic information systems: a review and discussion of future directions. Emerg Infect Dis 2, 85 - 92 (1996). 

Clayton, D. Kaldor, J.: Empirical Bayes estimates of agestandardized relative risks for use in disease mapping. Biometrics 43, 671 - 681 (1987). 

Cliff, A. D., Haggett: Atlas of disease distributions. Analytic approaches to epidemiological data. Blackwell, Oxford, New York (1988). 

Colwell, R. Huq, A. Lobitz, B., Beck, L., Wood, B.: Remote Sensing of Cholera Outbreaks: First Year Report. (geo.arc.nasa.gov/sge/health/projects/cholera/ cholera.html) (2000). 

Colwell, R. R.: Global climate and infectious disease: the cholera paradigm. Science 274, 2025 - 2031 (1996). 

Croner, C. M., Sperling, J., Broome, F. R.: Geographic Information Systems (GIS): New perspectives in understanding human health and environmental relationships. Statistics in Medicine 15, 1961 - 1977 (1996). 

Dale, P. E., Ritchie, S. A., Turrito, B. M., Morris, C. D., Muhar, A., Kay, B. H.: An overview of remote sensing and GIS for surveillance of mosquito vector habitats and risk assessment. J Vector Ecol 23, 54 - 61 (1998). 

Dangendorf, F., Herbst, S., Reintjes, S., Kistemann, T.: Spatial patterns of diarrhoeal illnesses with regard to water supply structures - a GIS analysis. Int. J. Hyg. Environ. Health 205, 183 -191 (2002). 

Diesfeldt, H. J.: Geomedicine. In: Spezielle pathologische Anatomie. (W. Doerr, G. Seifert, eds.), pp. 25 - 59. Springer, Heidelberg 1995 (Tropical Pathology Bd. 8). 

Dunn, C.: GIS and epidemiology. AGI publication number 5/92. Association for Geographic Information. London 1992. 

Earickson, R.: Geographic research at the end of the century: papers from the eighth International Symposium on Medical Geography. Soc Sci Med 50, 911 - 913 (2000a). 

Earickson, R.: Health geography: style and paradigms. Soc Sci Med 50, 457 - 458 (2000b). 

Eikmann, T., Herr, C.: Novellierung der (Muster-) Weiterbildungsordnung ± eine neue Herausforderung f¸r die Umweltmedizin? Umweltmed Forsch Prax 6, 1 (2001). 

English, D.: Geographical epidemiology and ecological studies. In: Geographical and environmental epidemiology (P. Elliott, J. Cuzick, D. English, R. Stern, eds.), pp. 1 - 13. Oxford University Press, Oxford 1992. European Community (1991): Atlas of Avoidable Death. Oxford, 1991. 

Finke, L.: Versuch einer allgemeinen medicinisch-praktischen Geographie, worin der historische Teil der einheimischen Vˆlker und Staatenarzneykunde vorgetragen wird. Vol. 1 ± 3, Leipzig 1792 - 1795. 

Flahault, A., Toubiana, L., Viboud, C., Lenglos, D., Valleron, A. J.: Electronic monitoring of diseases. In: Geography and medicine. Geomed'99. Proceedings of the second international workshop on geomedical systems, Paris, 22 - 23. November 1999. (A. Flahault, L. Toubiana, A.J. Valleron, eds.) pp. 81 - 91. Elsevier, Amsterdam 2000. 

Fotheringham, A. S., Brunsdon, C. Charlton, M.: Quantitative Geography. Perspectives on Spatial data analysis. Sage Publications, London 2000. 

Gail, M.: The analysis of indirect standardized mortality ratios. Journal of the Royal Statistical Society, Series A, 141, 224 (1978). 

Gatrell, A. C. Bailey, T. C.: Interactive spatial data analysis in medical geography. Soc Sci Med 42, 843 - 855 (1996). 


Gesler, W.: The uses of spatial analysis in medical geography: a review. Soc Sci Med 23, 963 -973 (1986). 

Gesler, W.: Therapeutic landscapes: medical issues in light of the new cultural geography. Soc Sci Med 34, 735 - 746 (1992). 

Glass, G. E., Schwartz, B. S., Morgan, J. M., Jonson, D. T., Noy, P. M. Israel, E.: Environmental risk factors for Lyme disease identified with geographic information systems. Am J Pub Health 85, 944 - 948 (1995). 

Goetz, S. J., Prince, S. D., Small, J.: Advances in satellite remote sensing of environmental variables for epidemiological applications. Adv Parasitol 47, 289 - 307 (2000). 

Goodchild, M. F.: Strategies for GIS and Public Health. In: Geographic Information Systems in Public Health: Proceedings of the Third National Conference (R. C. Williams, M. M. Howie, C. V. Lee, W. D. Henriques, eds.), pp. 63 - 72 (www.atsdr.cdc.gov/GIS/conference98) 1998. 

Goodchild, M. F.: Communicating geographic information in a digital age. Annals of the Association of American Geographers 90, 344 -355 (2000). 

Greiner G, Kundt G, Gierl L. TeCoMed - Online consulting of acute health risk aspects of geographic information systems use. In: Geography and medicine. Geomed' 99. Proceedings of the second international workshop on geomedical systems, Paris, 22 - 23. November 1999. (A. Flahault, L. Toubiana, A. J. Valleron, eds.) pp. 102 - 107. Elsevier, Amsterdam 2000. 

Haining, R.: Geographic Information Science and Public Health. In: Geographic Information Sciences in Public Health 2001. First European Conference 19 - 20 September 2001, Sheffield, UK. Conference Abstracts, p. 2 (2001). 

Hay, S. I.: An overview of remote sensing and geodesy for epidemiology and public health application. Adv. Parasitol. 47, 1 -35 (2000). 

Hay, S. I., Omumbo, J. A., Craig, M. H., Snow, R. W.: Earth observation, geographic information systems and Plasmodium falciparum malaria in sub-Saharan Africa. Adv Parasitol 47, 173 -215 (2000). 

Hay, S. I., Snow, R. W., Rogers, D. J.: Predicting malaria seasons in Kenya using multitemporal meteorological satellite sensor data. Trans RSoc Trop Med Hyg 92, 12 - 20 (1998). 

Hirsch, A.: Handbuch der historisch-geographischen Pathologie. Vol. 1 - 2, Erlangen 1860 - 1864. 

Howe G. M.: National Atlas of Disease Mortality in the United Kingdom. London 1963. 

Jacquez G. M.: Disease Cluster Investigation and GIS: A New Paradigm? In: Geographic Information Systems in Public Health: Proceedings of the Third National Conference (R. C. Williams, M. M. Howie, C. V. Lee, W. D. Henriques, eds.), pp. 83 - 92. (www.atsdr.cdc.- gov/GIS/conference98) 1998. 

Jaquez, G. M.: GIS as an enabling technology. In: GIS and Health. (A. Gatrell, M. Lˆytˆnen, eds.), pp. 17 - 28. Taylor & Francis, London 1998. 

Jaquez, G. M.: STAT! Statistical software for the clustering of health events, user manual. Biomedware, Ann Arbor 1994. 

Jusatz, H.: Geomedizin und Medizinische Topographie. In: Lehrbuch der Hygiene (H. G‰rtner, H. Reploh, eds.), pp. 233 - 240. Gustav Fischer, Stuttgart 1964. 

Jusatz, H.: Geomedizin und Medizinische Topographie. In: Lehrbuch der Hygiene - Pr‰ventive Medizin (H. G‰rtner, H. Reploh, eds.), pp. 281 - 287. Gustav Fischer, Stuttgart 1969. 

Kearns, R. A.: Health and Place: Towards a reformed medical geography. Professional Geographer 45, 139 - 147 (1993). 

Kistemann, T., Dangendorf, F., Krizek, L., Sahl, H.-G., Engelhart, S., Exner, M.: GIS-supported investigation of a nosocomial Salmonella outbreak. Int J Hyg Environ Health 203: 117-126 (2000). 

Kistemann, T., Leisch, H., Schweikart, J.: Geomedizin und Medizinische Geographie. Geographische Rundschau 49, 198 - 203 (1997). 

Kistemann, T., Munzinger, A., Dangendorf, F.: Spatial patterns of tuberculosis incidence in Cologne (Germany). Soc Sci Med (in press).

Klemmer, W., Spranz, R.: GIS. Projektplanung und Projektmanagement. Theorie und Praxis. Bonn 1997. 

Kraak, M.-J.: Webmapping ± Webdesign. In: Web.Mapping 1. Raumbezogene Information und Kommunikation im Internet. (C. Herrmann, H. Asche, eds.), Wichmann, Heidelberg (2001). 

Linthicum, K. J., Bailey, C. L., Davies, F. G., Tucker, C. J.: Detection of Rift Valley fever activity in Kenya by satellite remote sensing imagery. Science 235 (4796), 1656 - 1659 (1987). 

Lobitz, B., Beck, L., Huq, A., Wood, B., Fuchs, G., Faruque, A. S., Colwell, R.: From the cover: climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. Proc Natl Acad Sci USA 97, 1438 - 1443 (2000). 

Lˆytˆnen, M.: GIS, time geography and health. In. GIS and Health. (A. Gatrell, M. Lˆytˆnen, eds.), pp. 97 - 110. Taylor & Francis, London 1998. 

Marshall, R. J.: A review of methods for the statistical analysis of spatial patterns of disease. Journal of the Royal Statistical Society A 154, 421 - 441 (1991). 

Mayer, J. D., Meade, M. S.: A reformed medical geography reconsidered. Professional Geographer 46, 103 ± 105 (1994). 

Mayer, J. D.: Relation between two traditions of medical geography: health system planning and geographical epidemiology. Prog Hum Geogr 6, 216 - 230 (1982). 

Mayer, J. D.: The centrality of medical geography to human geography: the tradition of geographical and medical geographical thought. Norsk Geografisk Tidskrift 44, 174-187 (1990).

Mayer, J. D.: The political ecology of disease as one new focus for medical geography. Progr Hum Geogr 20, 441 - 456 (1996). 

McLeod, K. S.: Our sense of Snow: the myth of John Snow in medical geography. Soc Sci Med 50, 923 - 935 (2000). 

Meinel, G., Reder, J.: Ikonos-Satellite Data ± report on some preliminary experience. Kartographische Nachrichten 51, 40 ± 46 (2001). 

Morgenstern, H.: Ecologic studies. In: Modern Epidemiology. (K. J. Rothman, S. Greenland, eds.), pp. 459 - 480. Lippincott - Raven, Philadelphia 1998. 

Mott, K. E., Nuttall, I., Desjeux, P.,Cattand, P.: New geographical approaches to control of some parasitic zoonoses. Bull. World Health Organ. 73, 247 - 257 (1995). 

O'Dwyer, L. A.: Potential meets reality: GIS and public health research in Australia. Aust N Z J Pub Health 22, 819 - 823 (1998). 

Omran, A. R.: The epidemiological transition: a theory of the epidemiology of population change. Millbank Memorial Fund Quarterly 49, 509 - 538 (1971). 

Openshaw, S. , Charlton, M.,Cross, A. E.: Building of a prototype Geographical Correlates Exploration Machine. Int J GIS 4, 297 - 311 (1990). 

Openshaw, S., Charlton, M.: A mark 1 geographical analysis machine for the automated analysis of point data sets. Geographical Information Systems 1, 335 - 358 (1987). 

Openshaw, S.: The modifiable areal unit problem. CATMOG No 38, Geo Books, Norwich 1984. 

Petermann A.: Cholera map of the British Isles showing the districts affected in 1831, 1832, 1833. London 1852. Duan, N.: An event-based spatiotemporal data model. ESTDM for temporal analysis of geographical data. Int J GIS 9, 7 - 24 (1995). 

Philipps, D. R.: Epidemiological transition: implications for health care provision. Geografiska Annaler 76B, 71 - 89 (1994). 

Rimpau, W.: Klimatisch-geographische Medizin. Geomedizin als Wissenschaft. M¸nchner Medizinische Wochenschrift, 81, 940 - 943 (1934). 

Robinson, W.S.: Ecological correlations and the behavior of individuals. Am Soc Rev 15, 351- 357 (1950). 

Rodenwaldt, E., Bader, R.-E.: Lehrbuch der Hygiene. Springer, Berlin 1951. Rodenwaldt, E., Jusatz, H.: World Atlas of Epidemic Diseases. Vol. 1 - 3, Hamburg 1952 - 1961. 

Rodenwaldt, E., Zeiss, H.: Malariastudien im Vilajet Aidin (Kleinasien). Archiv f¸r Schiffs- und Tropenhygiene 22: 97 (1918). 

Rose, J. B., Daeschner, S., Easterling, D. R., Curriero, F. C., Lele, S., Patz, J. A.: Climate and waterborne disease outbreaks. J Am Water Works Assoc 92, 9, 77 - 87 (2000). 

SchÒrstrˆm, A.: Pathogenic path? A time geographical approach in medical geography. Meddelanden fra n Lunds Universitets Geografiska Institutioner, Avhandlingar, 125, Lund University Press, Lund 1996. 

Scholten, H. J. de Lepper, M. J. C.: The benefits of the application of geographical information systems in public and environmental health. World Health Stat. Quarterly 44, 160 - 170 (1991). 

Schrˆder, K.: Thematische Karten im Internet: Neue Mˆglichkeiten der Karten- und Legendengestaltung. Berlin (Berliner Manuskripte zur Kartographie) (1998). 

Schweikart, J.: Daten zur Gesundheit in der Karte. Mˆglichkeiten und Perspektiven. geoinformatik online 1/99. (gio.uni-muenster.de) (1999). 

Selvin, H.C.: Durkheim's ™suicide∫ and problems of empirical research. American Journal of Sociology 63, 607 -619 (1958). 

Seto E. Y., Maszle D. R., Spear, R. C., Gong Peng,Wood, B.: Remote Imaging Applied to Schistosomiasis Control: The Anning River Project. In: Geographic Information Systems in Public Health: Proceedings of the Third National Conference (R. C. Williams, M. M. Howie, C. V. Lee, W. D. Henriques, eds.), pp. 331 - 340. (www.atsdr.cdc.gov/GIS/conference98) 1998. 

Shindo, N., Osaka, K., Taniguchi, K., Inouye, S., Terajima, K., Izumiya, H., et al.: Geographic Information systems for foodborne diseases in Japan: development of Food-Info Net. In: Geography and medicine. Geomed'99. Proceedings of the second international workshop on geomedical systems, Paris, 22 - 23. November 1999. (A. Flahault, L. Toubiana, A. J. Valleron, eds.) pp. 97 - 101. Elsevier, Amsterdam 2000. 

Smallman-Raynor, M. R., Cliff, A. D. Hagett, P.: London international atlas of AIDS. Oxford, Cambridge/ Massachusetts 1992. 

Smans, M., Este¡ve, J.: Practical approaches to disease mapping. In: Geographical and environmental epidemiology (P. Elliott, J. Cuzick, D. English, R. Stern, eds.), pp. 141 - 150. Oxford University Press, Oxford 1992. Snow, J.: On the mode of communication of cholera. 2nd ed., London 1855. 

Srivastava, A., Nagpal, B. N., Safena, R., Sharma, V. P.: Geographic information system as a tool to study malaria receptivity in Nadiad Taluka, Kheda district, Gujarat, India. Southeast Asian J Trop Med Public Health 30, 650 - 656 (1999). 

Stevenson, L.: Putting disease on the map: the early use of spot maps in the study of yellow fever. Journal of the History of Medicine and Allied Sciences 20, 226 - 261 (1965). 

Thomas, C. J., Lindsay, S. W.: Local-scale variation in malaria infection amongst rural Gambian children estimated by satellite remote sensing. Trans RSoc Trop Med Hyg 94, 159- 163 (2000). 

Valleron, A. J., Garnerin, P.: Computer networking as a tool for public health surveillance: the French experiment. In: MMWR41 (Suppl), 101 ± 110 (1992). van den Berg, N., von der Ahe¬, K.-R.: Geoinformationssysteme in der Epidemiologie. Kartographische Nachrichten 2, 52 - 58 (1997). 

Verhasselt, Y.: Geography of health: some trends and perspectives. Social Science and Medicine 36, 119 - 123 (1993). 

Wellie, O. Duhme, H., von Mutius, E., Keil, U., Weiland, S. K.: Der Einsatz von Geoinformationssystemen (GIS) in epidemiologischen Studien dargestellt am Beispiel der ISAAC - Studie M¸nchen. Das Gesundheitswesen 62, 423 - 430 (2000). 

Wilkinson, P., Grundy, C., Landon., M.,Stevenson, S.: GIS in Public Health. In: GIS and Health. (A. Gatrell, M. Lˆytˆnen, eds.), pp. 179 - 190. Taylor & Francis, London 1998. 

Wood, B. L., Beck, L. R., Lobitz, B. M., Bobo, M. R.: Education, outreach and the future of remote sensing in human health. Adv Parasitol 47, 331 - 344 (2000). 

World Health Organization: Geographical information systems (GIS). Weekly Epidemiological Record 74, 281 - 285 (1999). 

Zhang, Z., Griffith, D. A.: Developing user-friendly spatial statistical analysis modules for GIS: an example using ArcView. Computing, Environmental and Urban Systems 21, 5 - 29 (1997). 


Full Text


ليست هناك تعليقات:

إرسال تعليق

آخرالمواضيع






جيومورفولوجية سهل السندي - رقية أحمد محمد أمين العاني

إتصل بنا

الاسم

بريد إلكتروني *

رسالة *

Related Posts Plugin for WordPress, Blogger...

آية من كتاب الله

الطقس في مدينتي طبرق ومكة المكرمة

الطقس, 12 أيلول
طقس مدينة طبرق
+26

مرتفع: +31° منخفض: +22°

رطوبة: 65%

رياح: ESE - 14 KPH

طقس مدينة مكة
+37

مرتفع: +44° منخفض: +29°

رطوبة: 43%

رياح: WNW - 3 KPH

تنويه : حقوق الطبع والنشر


تنويه : حقوق الطبع والنشر :

هذا الموقع لا يخزن أية ملفات على الخادم ولا يقوم بالمسح الضوئ لهذه الكتب.نحن فقط مؤشر لموفري وصلة المحتوي التي توفرها المواقع والمنتديات الأخرى . يرجى الاتصال لموفري المحتوى على حذف محتويات حقوق الطبع والبريد الإلكترونيإذا كان أي منا، سنقوم بإزالة الروابط ذات الصلة أو محتوياته على الفور.

الاتصال على البريد الإلكتروني : هنا أو من هنا