التسميات

الخميس، 15 مارس 2018

Industrial Symbiosis: Exploring Big-data Approach for Waste Stream Discovery ...


Industrial Symbiosis: Exploring Big-data Approach for Waste Stream Discovery

Bin Songa , Zhiquan Yeo, Paul Kohls, Christoph Herrmannc

a Singapore Institute of Manufacturing Technology, 2 Fusionopolis Way, #08-04, Innovis, Singapore 138634 

b University of Cincinnati, Cincinnati, Ohio, USA

c Technische Universität Braunschweig, Germany

The 24th CIRP Conference on Life Cycle Engineering

Procedia CIRP 61 ( 2017 ) 353 – 358:

Abstract 

   Industrial symbiosis is a way to realize circular economy in which waste streams from industrial production and related activities are collected, reused or recycled into resources. The concept is increasingly incorporated into new company design and industrial park development. There also exist waste management companies who collect and process certain waste streams for economic gains. However, industrialized cities typically experience difficulty to increase their total recycling rate due to the lack of complete and detailed data on the types, quantity, and location of waste streams generated, and hence the economically-viable collection and processing of many waste streams. This paper explores and discusses the feasibility and methods for a big data approach to obtain necessary data for discovery of potential industrial symbioses within the perimeter of a large industrialized city. The aim is to realize the objective of embedding industrial symbioses as an essential part of sustainable urban living and management. 

. © 2017 The Authors. Published by Elsevier B.V. Peer-review under responsibility of the scientific committee of the 24th CIRP Conference on Life Cycle Engineering. 

Keywords: Big Data; Industrial Symbiosis; Waste reuse and recycle; urban sustainability


4. Conclusion

  Remarks Industrial symbiosis is an important part of waste reduction for sustainable urban development. However, the complexity, diversity, and dynamics of waste generation sources are a hurdle for gathering a comprehensive set of data for initiating and eventually the operation of industrial symbioses. Leveraging on the widely available data on cyberspace, the big data analytics is deemed a promising approach to identify the potential industrial symbioses within the perimeter of a large industrialized city.
A prerequisite to analyze and discover potential industrial symbioses is to obtain data on the location, type, and quantity of input materials and waste streams cross the concerned geographical region. In this paper, a big data approach is proposed and discussed. The approach consists of three critical steps: 

Step 1: searching the internet and webpages for relevant businesses and data; 
Step 2: identification of the type of input resources and waste streams; and 
Step 3: material quantity estimation. 

  For step 1, web portals containing classified company data on company category, products/services, and address are found to be better target for first level search. In cases where sufficient information is unavailable, websites of individual companies can be searched. Cross search of a list of web portals, filtering out the duplicated entries, would build up a database containing company name, address, classified category, and product/service type for a geographical region.
 
  A proof-of-concept program using Singapore as the geographical region was developed. The results demonstrated the viability of the approach.

  Step 2 employs a modeling approach to correlate product/service type to key business processes, and then to materials input and waste streams. The creation of the product type to processes model and the process to materials model require diverse knowledge of specific business and engineering domains. Fortunately, rich sources of internet portals as well as engineering manuals are found available to extract the required data for the models. 

  In step 3, company revenue is used to estimate the quantity of required input materials and waste streams. The assumed linear relationships between revenue and amount of input materials and generated waste streams are considered inaccurate, and hence can only provide the initial rough estimation for identifying potential industrial symbioses. However, the results would provide a list of specific potential members of an industrial symbiosis. A focused on-site investigation of the potential members would obtain accurate value for suitability of individual members as well as feasibility assessment of the industrial symbiosis.

  The work of this paper is still preliminary. Further research is required to extend the proof-of-concept system to step 2 and 3, to develop a data mining algorithm to extract knowledge for population of the product type to processes model and the process to materials model, and to develop a machine learning algorithm so that collected data sets from reference companies can be used to improve the accuracy of the quantity of input materials and waste streams in reference to a company’s revenue. 

References 

[1] WRAP, UK, 
http://www.wrap.org.uk/content/what-industrial-symbiosis. 

[2] USPCSD, Eco-Industrial Park Workshop Proceedings, October 17-18, 1996 Cape Charles, Virginia. 
http://clinton2.nara.gov/PCSD/ Publications/Eco_Workshop.html#v> . 

[3] Ehrenfeld, J., Gertler, N., Industrial Ecology in Practice – the evolution of interdependence at Kalundborg, Journal of Industrial Ecology, Vol.1, No. 1, 1997 

[4] Lowe E., Regional Resource Recovery and Eco-industrial Parks an integrated strategy, Verwertungsnetz Obersteiermark Innovation Dutch Regionale Recycling-Netzwerke at Kerl-Franzens-Universitat Graz, April 28-29, 1997. 

[5] Cote R.P., Cohen-Rosenthal E., Designing eco-industrial parks: a symthesis of some experiences, J. of Cleaner Production, 6, 1998 .

[6] Gibbs D., Deutz P., and Proctor A., Industrial Ecology and Eco-industrial Development: A Potential Paradigm for Local and Regional Development? Regional Studies, Vol. 39.2, p 171-183, April 2005. 

[7] Desrochers P., Cities and Industrial Symbiosis, Journal of Industrial Ecology, Vol 5, No. 4, pp29-44, 2002. 

[8] United Nations, World Urbanization Prospects: The 2014 Revision. Department of Economic and Social Affairs, United Nationa, New York 2014 (ISBN 978-92-1-151517-6). 

[9] R. Dobbs, S. Smit, J. Remes, J. Manyika, C. Roxburgh, A. Restrepo, Urban World: Mapping the economic power of cities, . McKinsey Global Institute, March 2011. 

[10] Song B.,Yeo Z.Q., Low S. C., Koh J.W., Kurle D., Cerdas F.,, Herrmann C., A big data analytics approach to develop industrial symbioses in large cities, 22nd CIRP Conference on Life Cycle Engineering, Procedia CIRP, Vol 29, pp450-455, 2015 .

[11] Chertow, M.R., “Uncovering” industrial symbiosis, Journal of Industrial Ecology, Vol. 11, No. 1, pp11-30, 2007 .

[12] O’Rourke D., Connelly L., Koshland C., Industrial Ecology: A critical review, International Journal of Environment and Pollution, Vol. 6, No. 2/3, pp89-112, 1996 .

[13] Den Hond F., Industrial ecology: a review, Regional Environmental Change 1, pp60-69, 2000 .

[14] Manyika J., Chui M., Brown B., Bughin J., Dobbs R., Roxburgh C., Byers A. H., Big data: The next frontier for innovation, competition, and productivity, McKinsey Global Institute, May 2011. 

[15] Lapkin A, Hype Cycle for Big Data, Gartner, 31 July 2012. 

[16] IBM, The Four V's of Big Data, Big Data & Analytics Hub, available on-line at http://www.ibmbigdatahub.com/infographic/four-vs-big-data. 


[17] SSIC, Singapore Standard Industrial Classification 2015, Department of Statistics Singapore
(http://www.singstat.gov.sg/docs/default-source/ default-document library/methodologies_and_standards/standards_ and_classifications/industrial_classification/ssic2015-report.pdf) 

[18] Firebase, https://firebase.google.com 

[19] Google map, https://maps.google.com 

[20] OMICS International, 
http://research.omicsgroup.org/index.php/List_of_ manufacturing_processes#Machining 

[21] Environmentally Conscious Manufacturing (ECM), Januay – September 1997, http://cpas.mtu.edu/cencitt/report1997/ecm.html#ecmppwsdp 


[22] Waste Streams in Machining, http://www.mfg.mtu.edu/cyberman/ environment/mpw/wastestreams/trad/was.html 

[23] EMIS: Environmental Management Information System, 
http://80.120.147.40/RBO/objects.php?CLASSID=224&SELECT=&PRO JECTID=400&back=close 

[24] OSHAN Food Waste Database, 
http://www.noshan.eu/index.php/en/ food-waste-database-register/food-waste-database 

[25] Bralla, James G. edi, Handbook of Manufacturing Processes - How Products, Components and Materials are Made, Industrial Press, 2007 

[26] MatNavi, Materials Database by National Institute of Materials Science (NIMS), Japan, http://mits.nims.go.jp/index_en.html 

[27] United Nations, International Standard Industrial Classification of All Economic Activities (ISIC), Rev. 4, 2008 

[28] BizInsights, 
https://www.bizinsights.net/bzn/report.html#bpf 


Full Text 




ليست هناك تعليقات:

إرسال تعليق

آخرالمواضيع






جيومورفولوجية سهل السندي - رقية أحمد محمد أمين العاني

إتصل بنا

الاسم

بريد إلكتروني *

رسالة *

Related Posts Plugin for WordPress, Blogger...

آية من كتاب الله

الطقس في مدينتي طبرق ومكة المكرمة

الطقس, 12 أيلول
طقس مدينة طبرق
+26

مرتفع: +31° منخفض: +22°

رطوبة: 65%

رياح: ESE - 14 KPH

طقس مدينة مكة
+37

مرتفع: +44° منخفض: +29°

رطوبة: 43%

رياح: WNW - 3 KPH

تنويه : حقوق الطبع والنشر


تنويه : حقوق الطبع والنشر :

هذا الموقع لا يخزن أية ملفات على الخادم ولا يقوم بالمسح الضوئ لهذه الكتب.نحن فقط مؤشر لموفري وصلة المحتوي التي توفرها المواقع والمنتديات الأخرى . يرجى الاتصال لموفري المحتوى على حذف محتويات حقوق الطبع والبريد الإلكترونيإذا كان أي منا، سنقوم بإزالة الروابط ذات الصلة أو محتوياته على الفور.

الاتصال على البريد الإلكتروني : هنا أو من هنا