التسميات

الخميس، 27 يونيو 2019

An evaluation of Spatial Interpolation Methods for Estimating Rainfall and Air Temperature in Egypt


An evaluation 

of Spatial Interpolation Methods for

Estimating Rainfall and Air Temperature 

in Egypt

Dr. Mohamed Mohamed Abdelaal Ibrahim

Lecture of Physical Geography, Social Studies Department, Faculty of Education, Mansoura University, Egypt



THE ARABIAN JOURNAL OF GEOGRAPHICAL INFORMATION SYSTEMS,VOL. (9), NO. (2), DhuAlHijjah 1437 A.H./ October 2016 A.D. 

Abstract: 

  GIS layers for climatic data, which were generated based on irregularly distributed points, are very important for many disciplines such as climatology, agriculture and hydrology. This study aims to evaluate eight spatial interpolation techniques such as IDW, spline, and kriging, and to compare their performance in generating optimal spatial distributions of monthly mean maximum and minimum temperature and total rainfall from meteorological stations network located across Egypt. Interpolation techniques were applied to monthly climatic normals over 40-year period for more than 40 spatially- representative observatories in Egypt covering different micro-climate conditions. Different statistical accuracy measurements such as Willmott Statistical methods and index of Nash-Sutcliffe efficiency criterion were used to determine the best methods. Results demonstrate that optimal temperature mapping was obtained using Kok, Kr, SWT interpolation methods. The performance of LPI and Kok interpolation methods was better than that of other methods as they produced better outcomes of surfaces prediction for rainfall. 

Key Words: Geostatistical techniques, spatial interpolation, rainfall, temperature, cross-validation, Egypt 

1. Introduction: 

  The need for developing spatial interpolation methods of climatic data from spare networks weather station has grown dramatically over the past decade, especially with the progress of computer technology and it has been the focus of many climate studies (Thiessen, 1911; Shepard, 1968; Hughes, 1982; Hutchinson & Bischof, 1983; Tabios, et al, 1985; Phillips et al, 1992; Daly, 1994; Holdaway, 1996; Price, et al, 2000; Vicente-Serrano, et al, 2003; Guler, et al, 2007; de Amorim et al, 2013). Geoestatistics is a branch of science that applies statistical methods to describe and evaluate the spatial variability of climatic events, allowing their mapping, quantification and modeling through the interpolation of sampled measurement points in space (Correa, et al, 2014; Wanderley et al, 2013)

   It is a difficult task for a climatologist or a meteorologist to find a dense spatial climatic data covering wide and extended areas, and to determine where they are most needed in places where no climate observations have been made. That is because the climate data is recorded at too much permanent disperse ground-weather stations, and therefore many statistical and geostatistical interpolation methods have been developed to predict climatic values in areas without ground-weather stations (Vicente-Serrano, et al, 2003; Dobesch et al, 2007). Additionally, the networks of surface weather stations are usually concentrated on lower altitudes and populated areas (Tveito, et al, 2008). GIS capabilities and applications allow users of spatiotemporal (space-time) interpolation methods to estimate unknown values at unsampled times and locations with a satisfying level of accuracy (Li & Revesz, 2004). Climate data collected on a sparse table network of monitoring points are interpolated to a regular grid of points using GIS (Boer et al, 2001). It is argued that climate effects are felt locally, and that they are region-specific. Hence, it is crucial to use spatial interpolation techniques for climate forecasts at any place for any time (Bhowmik, 2012).

   Spatially continuous data (or GIS layers), which were generated based on irregularly distributed points, are very important for many disciplines, particularly climatology. Furthermore, there is a surprising diversity of methods which perform such task. Each method has its own advantages and drawbacks with reference to the characteristics of the set of point data. Therefore, it is important to select the appropriate method which reproduces the actual surface as closely as possible (Caruso & Quarta, 1998). Li and Heap (2011) noted that there are several factors affecting the predictive performance of spatial interpolation methods. These methods include sampling density, sample spatial distribution, sample clustering, surface type, data variance, data normality, quality of secondary information, stratification, grid size or resolution, and interactions which may exist between these different factors.

  Spatial interpolation methods have been applied to various disciplines. The applications of geostatistics are found in a wide range of fields; the top fields are (1) geosciences, (2) water resources, (3) environmental sciences, 4) agriculture or soil sciences, (5) mathematics, (6) statistics and probability, (7) ecology, (8) civil engineering, (9) petroleum engineering, and (10) limnology (Li & Heap, 2014). Rainfall data is very important input for hydrological models and plant growth models; however, it is characterized by spatial and temporal variations, very irregular or unpredictable, poorly distributed and fickle due to strongly influenced by local or regional factors such as topographic features and dominant direction for wind at the time of rainfall. Accordingly, it is important to transform rain gauge data into surface/polygon data (Mutua, F. & Kuria, D., 2012; Sumner, G., 1998; Nalder & Wein, 1998).

   The main objectives of this paper are to evaluate eight of the most common GIS-based interpolation techniques such as IDW, spline, and kriging, and to compare their performance in generating optimal spatial distributions of monthly mean maximum and minimum temperature and total rainfall for meteorological stations in Egypt. Additionally, it seeks to obtain the most accurate spatially interpolated surfaces of mean maximum and minimum temperature and total rainfall in Egypt at different time scales (monthly, seasonally, annually) and to reach a finer resolution with the best interpolation method for hydrological and plant growth models. In addition to producing accurate climatic surfaces, this evaluation allows us to explore the relationship between climatic elements (in our case, rainfall and air temperature as the dependent variable) and climatic factors (altitude, latitude and longitude as the independent variables. 

5. Conclusions: 

  This study compared eight spatial interpolation methods (Global polynomial interpolation (GPI), local polynomial interpolation(LPI), Inverse distance weighted Interpolation(IDW), Completely regularized spline (CRS), spline with tension (SWT), Ordinary Kriging (Kr), CoKriging (Kok) and Linear Regression (Reg) using three topographical factors: elevation, longitude ,and latitude) to over 40-year monthly climate data recorded for (mean maximum and minimum temperatures and total rainfall ) during 1960-2006 fom a network of over 40 weather stations located across in Egypt. To decide the best spatial interpolation method for estimating temperature and rainfall in Egypt, The performances of the eight interpolation methods used in our study were assessed and compared using different types of measures for errors: Univariate statistical measures, Willmott Statistical method, index of agreement (d) and Nash – Sutcliffe efficiency criterion.

   For temperature, the results indicated that Kok, Kr, SWT and Reg methods have the lowest values of RMSE and highest values for the Nash – Sutcliffe efficiency criterion (NSC), so were more reliable than other interpolation methods used in our study for monthly and seasonally mean maximum temperature. For monthly, it was not clear a single specific pattern for all or mostly months .for seasonally, The RMSE ranged from 0.6 to 1.5 °C for Kr interpolation method, the highest values for the NSC index was (from 0.82 to 0.94 for Kr) Also the results have shown that Kok and IDW were the most suitable interpolation methods for monthly and seasonally mean minimum temperature. For monthly , The RMSE range between 0.80 and 1.5 °C for IDW, from 0.95 to 1.5 °C for Kok, the highest values for the NSC index were (from 0.74 , 0.81 ) With the application of Kok and IDW. For seasonally, the RMSE range between 0.8 and 1.2 °C for IDW, from 1 to 1.2 °C for Kok, the highest values for the NSC index were ( 0.63 , 0.59) with the application of Kok and IDW respectively. For rainfall, the performance of LPI and Kok were better than other methods used in this study for monthly rainfall. On the other hand, LPI method has the lowest RMSE of (35.73, 27.24, 3.46, 6.26) mm and has highest values of Nash – Sutcliffe efficiency criterion (NSC) (0.66, 0.63, 0.75, 0.71) respectively for (annual, winter, spring, and fall). This indicates that LPI method is a bit better and more reliable than other interpolation methods used in the present study for seasonal and annual rainfall in Egypt.

  The simple and multiple regression with geostatistical model were not the better interpolation models for temperature and rainfall estimation in Egypt for most months and seasons. This can be explained because the representative of low-density for weather station network using in our study, and these Network have an irregular spatial distribution, mostly located in populated areas and lower altitudes. Our results conform to similar results of previous studies; still, some other results are markedly different with reference to in Mediterranean area, the Middle East and Africa. The obtained results are reasonable, logical and suitable with climatic conditions in Egypt and its effecting factors. Obtaining accurate and reliable climatic maps is an important issue to conduct and complete several studies in disciplines such as environment, agriculture, bioclimatology and hydrology.

تقييم طرق الاستيفاء المكاني لتقدير الأمطار ودرجة حرارة

الهواء في مصر 


د. محمد محمد عبد العال إبراهيم

مدرس الجغرافيا الطبيعية بقسم المواد الاجتماعية

كلية التربية، جامعة المنصورة، مصر

الملخص:

  يُعد إنشاء طبقات نظم املعلومات الجغرافية للبيانات المناخية باستخدام نقاط موزعة بشكل غير منتظم ؛ أمر ذو أهمية للعديد من المجالات مثل المناخ والزراعة والهيدرولوجيا . لقد هدفت هذه الدراسة إلى تقييم ثمانية طرق للاستيفاء المكاني Interpolation منها kriging and, spline, IDW ومقارنة نتائجها للحصول على التوزيع المكاني الأمثل لمتوسط درجات الحرارة العظمى والصغرى و كمية الأمطار من خلال شبكة من المحطات المناخية داخل مصر. وقد اعتُمد خلال الدراسة على بيانات معدلات مناخية تم استخراجها من سلسلة متوسطات شهرية لفترة تزيد عن 40 سنة لأكثر من 40 محطة مناخية موزعة مكانياً قدر المتاح لتمثل أغلب الظروف المناخية الدقيقة داخل الأراضي المصرية . وقد استخدمت عدة قياسات للدقة الإحصائية مثل and methods Statistical Willmott efficiency Sutcliffe-Nash of index لتحديد أفضل هذه الطرق . وقد بينت النتائج أن الخرائط المثلى لتوزيع درجات الحرارة تم الحصول عليها باستخدام طرق ,Kr, Kok SWT . وبالنسبة للمطر كان أداء الاستيفاء لطرق Kok and LPI أفضل من الطرق الأخرى لأنها تنتج أفضل سطوح التنبؤ المكاني للمطر في مصر .


الكلمات المفتاحية: التقنيات الجيوإحصائية، الاستيفاء المكاني، الأمطار، درجة الحرارة، التحقق من الصحة، مصر.














References:

 Aguilar, E., Auer, I., et al, 2003, "Guidelines On Climate  Metadata And Homogenization", In World Climate Programme Data and Monitoring, Vol.53, WMO/TD, No. 1186, World Meteorological Organization.

 Amorim, D. P. B., Franke, J., et al, 2013, "Spatial Interpolation Of Climatological Information: Comparison Of Methods For The Development Of Precipitation Distribution In Distrito Federal", Brazil Atmospheric and Climate Sciences, Vol. 3, pp. 208-217.

 Anderson, S., 2011, An Evaluation Of Spatial Interpolation Methods On Air Temperature In Phoenix, AZ, Department of Geography, Arizona State University, Retrieved from.

 Apaydin, H., Sonmez, F. K., et al, 2004, "Spatial Interpolation Techniques For Climate Data In The GAP Region In Turkey", Climate Research, Vol. 28, pp.31–40.

 Azpurua, M. & Dos Ramos, K., 2010, "A Comparison Of Spatial Interpolation Methods For Estimation Of Average Electromagnetic Field Magnitude", Progress in Electromagnetics Research, Vol. 14, pp. 135-145.

 Bhowmik, A. K., & Cabral, P., 2011, "Statistical Evaluation Of Spatial Interpolation Methods For Small-Sampled Region: A Case Study Of Temperature Change Phenomenon In Bangladesh", In B. Murgante et al, (Eds.), Lecture Notes in Computer Science: Computational Science and Its Applications, pp. 44-49, Springer: Berlin / Heidelberg.

 Bhowmik, A. K., 2012, "A Comparison Of Bangladesh Climate

Surfaces From The Geostatistical Point Of View", International Scholarly Research Network, ISRN Meteorology, Article ID 353408, pp. 1-20.

 Boer, E. P. J., de Beurslde, K. M., et al, 2001, "Kriging And Thin Plate Splines For Mapping Climate Variables", JAG, Vol.3(2), pp.146-154.

 Caruso, C. & Quarta, F., 1998, "Interpolation Methods Comparison", Computers and Mathematics with Applications, Vol.35(12), 109-126.

 Chen, F.-W., & Liu, C.-W., 2012, "Estimation Of The Spatial Rainfall Distribution Using Inverse Distance Weighting (IDW) In The Middle Of Taiwan", Paddy and Water Environment, Vol.10(3), pp.209–222.

 Correa, C. C. G., Teodoro, P. E., et al, 2014, "Spatial Interpolation Of Annual Rainfall In The State Mato Grosso Do Sul (Brazil) Using Different Transitive Theoretical Mathematical Models", International Journal of Innovative Research in Science, Engineering and Technology, Vol.3(10).

 Cressie, N. A. C., 1993, Statistics Of Spatial Data, John Wiley & Sons, inc: New York.

 Daly, C., 1994, "A Statistical-Topographic Model For Mapping Climatological Precipitation Over Mountainous Terrain", Journal of Applied Meteorolology, Vol. 33, pp.140–158.

 De Amorim, P. B., Franke, J., et al, 2013, "Spatial Interpolation Of Climatological Information: Comparison Of Methods For The  Development Of Precipitation Distribution In Distrito Federal, Brazil", Atmospheric and Climate Sciences, Vol.3, pp.208-217.

 Deutsch, C. V., 2002, Geostatistical Reservoir Modeling, Oxford University Press.

 Dobesch, H., Dumolard, P., et al, 2007, Spatial Interpolation For Climate Data, The use of GIS in climatology and meteorology, ISTE Ltd: Great Britain.

 El Afandi, G., Morsy, M., et al, 2013, "Heavy Rainfall Simulation Over Sinai Peninsula Using The Weather Research And Forecasting Model", International Journal of Atmospheric Sciences, Vol. 2013, pp. 1-11. Retrieved from 
<http://dx.doi.org/10.1155/2013/241050>.

 El Kenawy, A., López-Moreno, J. I., et al, 2010, "Climatological Modeling Of Monthly Air Temperature And Precipitation In Egypt Through GIS Techniques", Climate Research, Vol.42, pp.161–176.

 Eldrandaly, K. A., & Abu-Zaid, et al, 2011, "Comparison Of Six GIS-Based Spatial Interpolation Methods For Estimating Air Temperature In Western Saudi Arabia", Journal of Environmental Informatics, Vol. 18(1), pp. 38-45.

 Geisser, S., 1975, "The Predictive Sample Reuse Method With Applications", Journal of American Statististical Association, Vol.70, pp.320–328.

 Ghazal, N. K., Fadhel, E., Abdu-Alkareem, et al, 2013, "Comparison Of Three Interpolation Methods For The Average Monthly Temperature In The South Of Iraqi Zone", Iraqi Journal of Physics, Vol. 11(21), pp. 59-66.

 Goovaerts, P., 1999, "Using Elevation To Aid The Geostatistical Mapping Of Rainfall Erosivity", Catena, Vol 34(3), pp.227–242.

 Goovaerts, P., 2000, "Geostatistical Approaches For Incorporating Elevation Into The Spatial Interpolation Of Rainfall", Journal of Hydrology, Vol. 228, 113–129.

 Guler, M., Cemek, B., et al, 2007, "Assessment Of Some Spatial Climatic Layers Through GIS And Statistical Analysis Techniques In Samsun Turkey", Meteorological Applications, Vol. 14, pp.163–169.

 Heino, R., 1999, "Homogeneity Of The Long-Term Urban Data Records", Atmospheric Environment, vol. 33, pp.3879-3883.

 Holdaway, M. R., (1996), Spatial Modeling And Interpolation Of Monthly Temperature Using Kriging, Climatic Research, Vol.6, pp.215-225.

 Hughes, D. A., 1982, "The Relationship Between Mean Annual Rainfall And Physiographic Variables Applied To A Coastal Region Of Southern Africa", Southern African Geographic Journal, Vol. 64, pp.41–50.

 Hutchinson, M. F., & Bischof, R. J., 1983, "A New Method Of  Estimating Mean Seasonal And Annual Rainfall For The Hunter Valley, New South Wales", Australian Meteorological Magazine, Vol. 31(3), 179–184.

 Isaaks, E. H., Srivastava, R. M., 1989, An Introduction To Applied Geostatistics, Oxford: Oxford University Press.

 Jansson, A., Tveito, O. E., et al, 2007, NORDGRID - A Preliminary Investigation On The Potential For Creation Of A Joint Nordic Gridded Climate Data- Set,” met.no Report, No. 3.

 Jantakat,Y., & Ongsomwang, S., 2011, "Assessing The Effect Of Incorporating Topographical Data With Geostatistical Interpolation", Suranaree Journal of Science and Technology, Vol.18(2), pp123-139.

 Johnston K., Ver Hoef J. M., et al, 2001, Arcgis 9 Using Arcgis Geostatistical Analyst, Redlands CA: ESRI.

 Keblouti, M., Ouerdachi, L., et al, 2012, "Spatial Interpolation Of Annual Precipitation In Annaba-Algeria - Comparison And  Evaluation Of Methods", Energy Procedia, Vol. 18, pp. 468 – 475.

 Kenawy, A., Lopez Moreno, et al, 2010, "Temperature Variability Along The Mediterranean Coast And Its Lines To Large-Scale Atmospheric Circulation (1957-2006)", Bulletin of the Egyptian Geographical Society, Vol.83.

 Kurtzman, D., & Kadmon, R., 1999, "Mapping Of Temperature Variables In Israel: A Comparison Of Different Interpolation Methods", Climate Research, Vol. 13, 33–43.

 Li, J., & Heap, A. D., 2011, "A Review Of Comparative Studies Of Spatial Interpolation Methods In Environmental Sciences:
Performance And Impact Factors", Ecological Informatics, Vol. 6, pp.228–241.

 Li, J., & Heap, A. D., 2014, "Spatial Interpolation Methods Applied In The Environmental Sciences: A Review", Environmental Modelling & Software, Vol. 53, pp.173-189.

 Li, L., & Revesz, P., 2004, "Interpolation Methods For SpatioTemporal Geographic Data", Computers, Environment and Urban Systems, Vol. 28, pp.201–227.

 Mallawaarachchi, T., Walker, P. A., et al, 1996, "GIS Based Integrated Modeling Systems For Natural Resource Management", Agricultural Systems, Vol.50, pp.169-189.

 Mutua, F., & Kuria, D., 2012, "A Comparison Of Spatial Rainfall Estimation Techniques: A Case Study Of Nandi River Basin Kenya", Journal of Agriculture, Science and Technology (JAGST), Vol. 14(2). 

 Nalder, I. A., & Wein, R. W., 1998, "Spatial Interpolation Of  Climatic Normals: Test Of A New Method In The Canadian Boreal Forest", Agricultural and Forest Meteorology, Vol. 92, pp.211-225.

 Pardo-Iguzquiza, E., 1998, "Comparison Of Geostatistical Methods For Estimating The Areal Average Climatological Rainfall Mean Using Data On Precipitation And Topography", International Journal of Climatology, Vol.18, pp.1031–1047.

 Peterson, T. C., & Easterling, D. R., 1994, "Creation Of Homogeneous Composite Climatological Reference Series", International Journal of Climatology, Vol. 14, pp.671-679.

 Peterson, T. C., Vose, R., et al, 1998, "Global Historical Climatology Network (GHCN): Quality Control Of Monthly Temperature Data", International Journal of climatology, Vol. 18, pp.1169–1179.

 Phillips, D. L., Dolph, J., et al, 1992, "A Comparison Of Geostatistical Procedures For Spatial Analysis Of Precipitation in Mountainous Terrain", Agriculture and Forest, Meteorology, Vol. 58, pp.119–141.

 Piazza, A. Di, Conti, F. L., et al, 2011, "Comparative Analysis Of Different Techniques For Spatial Interpolation Of Rainfall Data To Create A Serially Complete Monthly Time Series Of Precipitation For Sicily", Italy, International Journal of Applied Earth Observation and Geoinformation, Vol. 13, pp.396–408.

 Price, D. T., McKenney, D. W., et al, 2000, "A Comparison Of Two Statistical Methods For Spatial Interpolation Of Canadian Monthly Mean Climate Data", Agricultural and Forest Meteorology, Vol. 101, pp.81–94.

 Qingxiang L., Xiaoning Liu, et al, 2004, "Detecting And Adjusting Temporal Inhomogeneity In Chinese Mean Surface Air Temperature Data", Advances in Atmospheric Sciences, Vol. 21(2), pp.260–268.

 Shaltout, M., & Omstedt, A., 2014, "Recent Sea Surface Temperature Trends And Future Scenarios For The Mediterranean Sea", Oceanologia, Vol. 56(3), pp.411–443.

 Shepard, D. L., 1968, A Two Dimensional Interpolation Function For Irregularlyspaced Data, Proceedings of the 23rd National Conference, pp. 517–524, Association for Computing Machinery, ACM, Washington.

 Sluiter, R., 2008, Interpolation Methods For Climate Data Literature Review, KNMI, R&D Information and Observation Technology, De Bilt19 November, IR 2009-04.

 Soliman, K. H., 1953, Rainfall Over Egypt, Quarterly Journal of the Royal Meteorological Society, Vol. 79(341), pp.389–397.

 Stone, M., 1974, "Cross-Validatory Choice And Assessment Of Statistical Predictions", Journal of Royal Statistical Society, Series, B, Vol. 36(2), pp.111–147.

 Subyani, A. M., 2004, "Geostatistical Study Of Annual And Seasonal Mean Rainfall Patterns In Southwest Saudi Arabia", Hydrological Sciences, Vol. 49(5), pp.803-817.

 Sumner, G., 1998, Precipitation: Process And Analysis, New York: John Wiley.

 Tabios III, G. Q., & Salas, J. D., 1985, "A Comparative Analysis Of Techniques For Spatial Interpolation Of Precipitation", Water Resources Bulletic, Vol. 21(3), pp.365-380.

 Thiessen, A. H., 1911, "Precipitation Averages For Large Areas", Monthly Weather Review, Vol. 39(7), pp.1082–1084.

 Tuomenvirta, H., 2001, "Homogeneity Adjustments Of Temperature And Precipitation Series-Finnish And Nordic Data", International Journal of Climatology, Vol. 21(4), pp.495–506.

 Tveito, O. E., Wegehenkel, M., et al, 2008, The Use Of Geographic Information Systems In Climatology And Meteorology, Final Report, European cooperation in the field of scientific and technical research (COST Action719), Belgium,

 Vicente-Serrano, S. M., Beguerıa, S., et al, 2009, "A Complete Daily Precipitation Database For Northeast Spain: Reconstruction, Quality Control", And Homogeneity, International Journal Climatology, Vol. 30(8), pp.1146–1163.

 Vicente-Serrano, S. M., Saz-Sánchez, et al, 2003, "Comparative Analysis Of Interpolation Methods In The Middle Ebro Valley (Spain): Application To Annual Precipitation And Temperature", Climate Research, Vol. 24, pp.161–180.

 Wanderley, H. S., Amorim, R. F. C., et al, 2013, "Interpolação Espacial Da Precipitação No Estado De Alagoas Utilizando Técnicas Geoestatística", Campo Digital: Rev, Ciências Exatas eda Terra e Ciências Agrárias, Vol. 8(1), p. 34-42,

 Willmott, C. J., 1984, On The Evaluation Of Model Performance In Physical Geography, In G. L. Gaile, and C. J. Willmott (eds.), Spatial Statistics and Models, D. ReidelPublishing, pp. 443-460.

 Zare Chahouki, M. A., Zare Chahouki, A., et al, 2014, Evaluation Of Different Cokriging Methods For Rainfall Estimation In Arid Regions (Central Kavir Basin In Iran), Desert, pp.19-1.

<http://www.cobblestoneconcepts.com/ucgis2summer/anderson/anderson.htm>


Full Text


download      Click here

Read and download    Click here


ليست هناك تعليقات:

إرسال تعليق

آخرالمواضيع






جيومورفولوجية سهل السندي - رقية أحمد محمد أمين العاني

إتصل بنا

الاسم

بريد إلكتروني *

رسالة *

Related Posts Plugin for WordPress, Blogger...

آية من كتاب الله

الطقس في مدينتي طبرق ومكة المكرمة

الطقس, 12 أيلول
طقس مدينة طبرق
+26

مرتفع: +31° منخفض: +22°

رطوبة: 65%

رياح: ESE - 14 KPH

طقس مدينة مكة
+37

مرتفع: +44° منخفض: +29°

رطوبة: 43%

رياح: WNW - 3 KPH

تنويه : حقوق الطبع والنشر


تنويه : حقوق الطبع والنشر :

هذا الموقع لا يخزن أية ملفات على الخادم ولا يقوم بالمسح الضوئ لهذه الكتب.نحن فقط مؤشر لموفري وصلة المحتوي التي توفرها المواقع والمنتديات الأخرى . يرجى الاتصال لموفري المحتوى على حذف محتويات حقوق الطبع والبريد الإلكترونيإذا كان أي منا، سنقوم بإزالة الروابط ذات الصلة أو محتوياته على الفور.

الاتصال على البريد الإلكتروني : هنا أو من هنا