التسميات

الثلاثاء، 10 سبتمبر 2019

An Integrated Software Framework to Support Semantic Modeling and Reasoning of Spatiotemporal Change of Geographical Objects: A Use Case of Land Use and Land Cover Change Study


An Integrated Software Framework to Support Semantic Modeling and Reasoning of Spatiotemporal Change of Geographical Objects: A Use Case of Land Use and Land Cover Change Study


by 

Wenwen Li 1,*,Xiran Zhou 1  and Sheng Wu 1,2



School of Geographical Sciences and Urban Planning, Arizona State University, Tempe, AZ 85287-5302, USA
School of Computer and Information Science, Southwest University, Chongqing 400715, China
*Author to whom correspondence should be addressed.
Academic Editor: Wolfgang Kainz


ISPRS International Journal of Geo-Information . Oct 2016, Vol. 5, Issue 10, p179. 18p


Abstract: 

   Evolving Earth observation and change detection techniques enable the automatic identification of Land Use and Land Cover Change (LULCC) over a large extent from massive amounts of remote sensing data. It at the same time poses a major challenge in effective organization, representation and modeling of such information. This study proposes and implements an integrated computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. We first proposed a conceptual model to formally represent the spatiotemporal variation of change data, which is essential knowledge to support various environmental and social studies, such as deforestation and urbanization studies. Then, a spatial ontology was created to encode these semantic spatiotemporal data in a machine-understandable format. Based on the knowledge defined in the ontology and related reasoning rules, a semantic platform was developed to support the semantic query and change trajectory reasoning of areas with LULCC. This semantic platform is innovative, as it integrates semantic and spatial reasoning into a coherent computational and operational software framework to support automated semantic analysis of time series data that can go beyond LULC datasets. In addition, this system scales well as the amount of data increases, validated by a number of experimental results. This work contributes significantly to both the geospatial Semantic Web and GIScience communities in terms of the establishment of the (web-based) semantic platform for collaborative question answering and decision-making.
Keywords: geospatial semantic modeling; change detection; land use and land cover; semantic reasoning; spatial reasoning. 













6. Conclusions 

  This paper introduces the development and implementation of a computational framework to support the modeling, semantic and spatial reasoning of change information with regard to space, time and topology. The center of the system is a reasoning engine capable of linking existing knowledge and semantic rules to infer dynamically new knowledge for spatial thinking. The knowledge base that the system relies on is encoded in an ontology that models various properties (i.e., image, spatial, temporal) of a single spatial object and the spatial relationships among different objects. Earlier studies of LULCC modeling lack a knowledge-based approach to connect the results of change detection with geoinformation in GIS or spatial databases. Our work integrates both aspects of change information into the proposed ontological model by transforming image, spatial, temporal and thematic semantics in the semantic LULCC model. In addition, this model is not limited to use in LU studies; it is generally applicable for other applications, such as forest management, climate changes and fire monitoring that require extensible use of geographical data. Another important contribution of this work is the proposal of the ways to integrate the machine-understandable ontology, reasoning rules, spatiotemporal data, as well as the inference engine seamlessly into an operational software framework to support on-the-fly query, reasoning and visualization of the change information.

   There are several possible extensions of this research. First, we are implementing and integrating the proposed spatial ontology and reasoning framework into an operational cyberinfrastructure framework to support collaborative LULCC querying and decision-making. A prototype has been established [49]. In order to address the computational challenges in handling the management and reasoning of (billion-level) big LULCC data, we are extending the backbone reasoning model to develop a scalable semantic framework that can provide high performance support to spatial indexing, querying and reasoning. Finally, the ontological definition of classes and instances in this work is centered on discrete geospatial objects. This allows us to extend this ontological model to formally describe the geographical scenes that contain both objects and relationships between objects. We believe our work makes a major contribution in terms of providing both conceptual and practical solutions to the semantic modeling and reasoning of change data, and it will greatly benefit the broader Semantic Web and GIScience communities. 


References 

1. Bambacus, M.; Yang, C.; Evans, J.; Li, Z.; Li, W.; Huang, Q. Sharing earth science information to support the Global Earth Observing System of Systems (GEOSS). In Proceedings of the IGARSS 2008—2008 IEEE International Geoscience and Remote Sensing Symposium, Boston, MA, USA, 6–11 July 2008. 

2. Yang, C.; Li, W.; Xie, J.; Zhou, B. Distributed geospatial information processing: Sharing distributed geospatial resources to support Digital Earth. Int. J. Digit. Earth 2008, 1, 259–278. [CrossRef] 

3. Liu, B.; Wang, M.; Hong, R.C.; Zha, Z.J.; Hua, X.S. Joint learning of labels and distance metric. IEEE Trans. Syst. Man Cybern Part B 2010, 40, 973–978. [CrossRef] [PubMed] 

4. Li, W.; Yang, C.W.; Nebert, D.; Raskin, R.; Houser, P.; Wu, H.; Li, Z. Semantic-based web service discovery and chaining for building an Arctic spatial data infrastructure. Comput. Geosci. 2011, 37, 1752–1762. [CrossRef] 

5. Albalawi, E.K.; Kumar, L. Using remote sensing technology to detect, model and map desertification: A review. J. Food Agric. Environ. 2013, 11, 791–797. 

6. Klein, I.; Dietz, A.J.; Gessner, U.; Galayeva, A.; Myrzakhmetov, A.; Kuenzer, C. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. Int. J. Geogr. Inf. 2014, 26, 335–349. [CrossRef] ISPRS Int. J. Geo-Inf. 2016, 5, 179 17 of 18 

7. Kennedy, R.E.; Townsend, P.A.; Gross, J.E.; Cohen, W.B.; Bolstad, P.; Wang, Y.Q.; Adams, P. Remote sensing change detection tools for natural resource managers: Understanding concepts and tradeoffs in the design of landscape monitoring projects. Remote Sens. Environ. 2009, 113, 1382–1396. [CrossRef] 

8. Hamandawana, H.; Eckardt, F.; Chanda, R. Linking archival and remotely sensed data for long-term environmental monitoring. Int. J. Appl. Earth Obs. Geoinform. 2005, 7, 284–298. [CrossRef] 

9. Matchanov, M.; Teodoro, A.; Schroder, C. Criterion definition for the identification of physical-geographical boundaries of Khorezm oasis through remotely sensed data. Environ. Monit. Assess. 2016, 188, 1–14. [CrossRef] [PubMed] 

10. Arenas, H.; Harbelot, B.; Cruz, C. LC3: A spatiotemporal data model to study qualified land cover changes. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; Ahlqvist, O., Varanka, D., Fritz, S., Janowicz, K., Eds.; CRC Press: Boca Raton, FL, USA, 2015; pp. 211–242. 

11. Shi, X. Where are the spatial relationships in the spatial ontologies? Proc. Natl. Acad. Sci. USA 2011, 108, E459. [CrossRef] [PubMed] 

12. Gribb, W.J.; Czerniak, R.J. Land use/land cover classification systems and their relationship to land planning. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; CRC Press: Boca Raton, FL, USA, 2015; pp. 1–18. 

13. Lu, D.; Mausel, P.; Brondizio, E.; Moran, E. Change detection techniques. Int. J. Remote Sens. 2004, 25, 2365–2407. [CrossRef] 

14. Ahlqvist, O. Extending post-classification change detection using semantic similarity metrics to overcome class heterogeneity: A study of 1992 and 2001 US National Land Cover Database changes. Remote Sens. Environ. 2008, 112, 1226–1241. [CrossRef] 

15. Liu, Z.G.; Dezert, J.; Mercier, G.; Pan, Q. Dynamic evidential reasoning for change detection in remote sensing images. IEEE Trans. Geosci. Remote 2012, 50, 1955–1967. [CrossRef] 

16. Björk, A.; Skånes, H. The need for awareness of semantic plasticity in international harmonization of geographical information: seen from a nordic forest classification perspective. In Land Use and Land Cover Semantics: Principles, Best Practices and Prospects; CRC Press: Boca Raton, FL, USA, 2015; pp. 41–58. 

17. Anderson, J.R. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; US Government Printing Office: Washington, DC, USA, 1976. 

18. European Environment Agency (EEA). CORINE Land Cover Technical Guide: Addendum 2000. Available online: http://www.eea.europa.eu/publications/tech40add (accessed on 10 February 2016). 

19. American Planning Association. Land-Based Classification Standards. 2001. Available online: https://www.planning.org/lbcs/standards/pdf/InOneFile.pdf (accessed on 10 February 2016). 

20. Di Gregorio, A. Land Cover Classification System: Classification Concepts and User Manual. Available online: http://www.fao.org/docrep/008/y7220e/y7220e00.HTM (accessed on 10 February 2016). 

21. Harrison, A.R. National Land Use Database: Land Use and Land Cover Classification; O. Office of the Deputy Prime Minister, Ed.; Queen’s Printer and Controller of Her Majesty’s Stationery Office: London, UK, 2006. 

22. Jansen, L.J. Parameterized approaches to the categorization of land use and land cover. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; CRC Press: Boca Raton, FL, USA, 2015; pp. 59–84. 

23. Annoni, A. INSPIRE: Infrastructure of spatial information in Europe. In Proceedings of the 9th EC GIS&GI A, Coruna, Espana, 25–27 June 2003. 

24. Rips, L.J.; Shoben, E.J.; Smith, E.E. Semantic distance and the verification of semantic relations. J. Verbal Learn. Verbal Behav. 1973, 12, 1–20. [CrossRef] 

25. Tversky, A. Features of similarity. Psychol. Rev. 1977, 84, 327–352. [CrossRef] 

26. Li, W.; Raskin, R.; Goodchild, M.F. Semantic similarity measurement based on knowledge mining: An artificial neural net approach. Int. J. Geogr. Inf. Sci. 2012, 26, 1415–1435. [CrossRef] 

27. Sunna, W.; Cruz, I.F. Structure-based methods to enhance geospatial ontology alignment. In GeoSpatial Semantics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 82–97. 

28. Goldstone, R.L. Similarity, interactive activation, and mapping. J. Exp. Psychol. Learn. Mem. Cogn. 1994, 20, 3–28. [CrossRef] 

29. Lin, D. An information-theoretic definition of similarity. ICML 1998, 98, 296–304. 

30. Comber, A.; Fisher, P.; Wadsworth, R. Text mining analysis of land cover semantic overlap. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; CRC Press: Boca Raton, FL, USA, 2015; pp. 197–204. ISPRS Int. J. Geo-Inf. 2016, 5, 179 18 of 18 

31. Hornsby, K.; Egenhofer, M.J. Identity-based change: A foundation for spatio-temporal knowledge representation. Int. J. Geogr. Inf. Sci. 2000, 14, 207–224. [CrossRef] 

32. Worboys, M.F. Modelling changes and events in dynamic spatial systems with reference to socio-economic units. In Proceedings of the ESF GISDATA Conference on Modelling Change in Socio-Economic Units, Napthlion, Greece, 15–19 March 1998. 

33. Claramunt, C.; Jiang, B. An integrated representation of spatial and temporal relationships between evolving regions. J. Geogr. Syst. 2001, 3, 411–428. [CrossRef] 

34. Jiang, J.; Worboys, M. Event-based topology for dynamic planar areal objects. Int. J. Geogr. Inf. Sci. 2009, 23, 33–60. [CrossRef] 

35. Varanka, D.E.; Usery, E.L. An applied ontology for semantics associated with surface water features. In Land Use and Land Cover Semantics: Principles, Best Practices, and Prospects; CRC Press: Boca Raton, FL, USA, 2015; pp. 146–168. 

36. Prasad, A.R.D.; Guha, N. Concept naming vs. concept categorisation: A faceted approach to semantic annotation. Online Inf. Rev. 2008, 32, 500–510. [CrossRef] 

37. Batsakis, S.; Petrakis, E.G. Representing temporal knowledge in the semantic web: The extended 4d fluents approach. In Combinations of Intelligent Methods and Applications; Springer: Berlin/Heidelberg, Germany, 2011; pp. 55–69. 

38. Klyne, G.; Carroll, J.J. Resource Description Framework (RDF): Concepts and Abstract Syntax; W3C: Cambridge, MA, USA, 2006. 

39. McGuinness, D.L.; Van Harmelen, F. OWL web ontology language overview. W3C Recomm. 2004, 10, 1–22. 

40. Gutierrez, C.; Hurtado, C.; Vaisman, A. Introducing time into RDF. EEE Trans. Knowl. Data Eng. 2007, 19, 207–218. [CrossRef] 

41. Frasincar, F.; Milea, V.; Kaymak, U. tOWL: Integrating time in OWL; Springer: Berlin/Heidelberg, Germany, 2010. 

42. Krieger, H.U. A General Methodology for Equipping Ontologies with Time. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.168.1549&rep=rep1&type=pdf (accessed on 23 June 2016). 

43. Bereta, K.; Smeros, P.; Koubarakis, M. Representing and querying the valid time of triples for Linked Geospatial data. In Proceedings of the 10th Extended Semantic Web Conference (ESWC 13), Monpellier, France, 26–30 May 2013. 

44. Huang, Y.; Deng, G. Research on representation of geographic spatio-temporal information and spatio-temporal reasoning rules based on geo-ontology and SWRL. In Proceedings of the International Conference on Environmental Science and Information Application Technology, Wuhan, China, 4–5 July 2009. 

45. Sotirios, B. SOWL: A Framework for Handling Spatio-Temporal Information in OWL. Ph.D. Thesis, Technical University of Crete, Chania, Greece, 2011. 

46. Bledsoe, B.P.; Brown, M.C.; Raff, D.A. GeoTools: A toolkit for fluvial system analysis. J. Am. Water Resour. Assoc. 2007, 43, 757–772. [CrossRef] 

47. McBride, B. Jena: A semantic web toolkit. IEEE Int. Comput. 2002, 6, 55–59. [CrossRef] 

48. Prud’Hommeaux, E.; Seaborne, A. SPARQL Query Language for RDF. Available online: http://www.w3. org/TR/rdf-sparql-query/ (accessed on 23 June 2016). 

49. PolarGlobe. Available online: http://polar.geodacenter.org/lulcc 

Full Text


Download             Click here    


Read and download


Click here   Or     Click here


ليست هناك تعليقات:

إرسال تعليق

آخرالمواضيع






جيومورفولوجية سهل السندي - رقية أحمد محمد أمين العاني

إتصل بنا

الاسم

بريد إلكتروني *

رسالة *

Related Posts Plugin for WordPress, Blogger...

آية من كتاب الله

الطقس في مدينتي طبرق ومكة المكرمة

الطقس, 12 أيلول
طقس مدينة طبرق
+26

مرتفع: +31° منخفض: +22°

رطوبة: 65%

رياح: ESE - 14 KPH

طقس مدينة مكة
+37

مرتفع: +44° منخفض: +29°

رطوبة: 43%

رياح: WNW - 3 KPH

تنويه : حقوق الطبع والنشر


تنويه : حقوق الطبع والنشر :

هذا الموقع لا يخزن أية ملفات على الخادم ولا يقوم بالمسح الضوئ لهذه الكتب.نحن فقط مؤشر لموفري وصلة المحتوي التي توفرها المواقع والمنتديات الأخرى . يرجى الاتصال لموفري المحتوى على حذف محتويات حقوق الطبع والبريد الإلكترونيإذا كان أي منا، سنقوم بإزالة الروابط ذات الصلة أو محتوياته على الفور.

الاتصال على البريد الإلكتروني : هنا أو من هنا