التسميات

الخميس، 4 يوليو 2019

Charting the Course for Future Developments in Marine Geomorphometry: An Introduction to the Special Issue


Charting the Course for Future Developments in Marine Geomorphometry: An Introduction to the Special Issue

Vanessa Lucieer 1,* , Vincent Lecours 2 

and Margaret F. J. Dolan 3


Institute for Marine and Antarctic Studies, University of Tasmania, Tasmania 7000, Australia

2 Fisheries & Aquatic Sciences | Geomatics, School of Forest Resources & Conservation, University of Florida, Gainesville, FL 32653, USA; vlecours@ufl.edu

3 Geological Survey of Norway (NGU), Postal Box 6315 Torgarden, NO-7491 Trondheim, Norway; 
margaret.dolan@ngu.no
 
Geosciences 2018, 8, 477;

Received: 7 December 2018; Accepted: 10 December 2018; Published: 13 December 2018

Abstract: 

  The use of spatial analytical techniques for describing and classifying seafloor terrain has become increasingly widespread in recent years, facilitated by a combination of improved mapping technologies and computer power and the common use of Geographic Information Systems. Considering that the seafloor represents 71% of the surface of our planet, this is an important step towards understanding the Earth in its entirety. Bathymetric mapping systems, spanning a variety of sensors, have now developed to a point where the data they provide are able to capture seabed morphology at multiple scales, opening up the possibility of linking these data to oceanic, geological, and ecological processes. Applications of marine geomorphometry have now moved beyond the simple adoption of techniques developed for terrestrial studies. Whilst some former challenges have been largely resolved, we find new challenges constantly emerging from novel technology and applications. As increasing volumes of bathymetric data are acquired across the entire ocean floor at scales relevant to marine geosciences, resource assessment, and biodiversity evaluation, the scientific community needs to balance the influx of high-resolution data with robust quantitative processing and analysis techniques. This will allow marine geomorphometry to become more widely recognized as a sub-discipline of geomorphometry as well as to begin to tread its own path to meet the specific challenges that are associated with seabed mapping. This special issue brings together a collection of research articles that reflect the types of studies that are helping to chart the course for the future of marine geomorphometry. 

Keywords: bathymetry; digital terrain analysis; geomorphometry; geomorphology; habitat mapping; marine remote sensing 

3. Discussion 

   Geomorphometric analysis continues to evolve across each of the five themes mentioned in this paper. There are several questions in seafloor quantitative characterization research that will occupy our attention for decades to come and for which this special issue may progress discussion. There is a complex interplay where new developments in this field will ebb between improved data collection and data-processing technique to create higher-resolution and more accurate DBMs and workflows with improved big data processing algorithms to handle larger and more complex automated methodologies for feature extraction. As the paper by Mayer et al. [20] rightly points out, new approaches to seafloor mapping will particularly enhance efficiency and coverage. However, as Hughes-Clarke [30] identifies, analysts unfamiliar with acquisition geometry may potentially misinterpret variability in the data as geomorphometric features, and similarly, sparse depth soundings can lead to a false impression of flat seabed terrain. Bathymetric coverage of the seabed at various resolutions builds up the quest for robust methods for the production and analysis of multiscale DBMs, which perhaps will become the next major demand for marine geomorphometry. Methods for multiscale grid structure applied to bathymetric data have been recently explored by Maleika et al. [40], whilst options for the generation of multiresolution surfaces are now available in some multibeam processing software [41]. Further down the line, data end-users now have the option to merge datasets at multiple resolutions and use these directly in an analysis through data management solutions, such as the ESRI® Mosaic Dataset. It is essential for the future integrity of marine geomorphometry that these various types of multiresolution DBMs are produced and analyzed with due regard for the additional complexities of multiresolution surfaces, supported by adequate documentation to make the methods transparent and verifiable. It seems likely that terrain analysis methods focused on an analysis of distance rather than pixels will become more applicable in providing suitable outputs from multiresolution surfaces.

 Seafloor mapping is inherently a multidisciplinary task—a mix of hydrography, computer science, engineering, physics, and mathematics—that also delivers valuable data to many more disciplines, such as marine geology, oceanography, biology, habitat and species prediction modelling, remote sensing, and hydrographic surveying. New applications for marine geomorphometry will continue to be discovered as high-resolution data and marine geomorphometry becomes valued by even more applications, such as seafloor energy harvesting, marine archeology, and deep-sea resource assessment. Any new application areas will bring with them new challenges to marine geomorphometric analysis, which can best be met through a strong partnership between those advancing marine remote sensing and those developing geospatial techniques. We hope that this special issue identifies a breadth of perspectives and integrates ideas that will help to further establish the discipline of marine geomorphometry and provide the conduit to solve these future challenges.




Figure 1. The techniques used in the special issue to sample seafloor depths. Some articles combined multiple techniques. The category ‘other existing data’ includes, for example, navigational charts.


Figure 2. The range of resolutions presented or discussed in the articles.



Figure 3. The categories of terrain attributes used in the articles of the special issue.


Figure 4. The categories of applications that were presented in the special issue. Some articles
had multiple applications; for instance, when the geomorphology was interpreted and then used to map habitats.


References

1. Pike, R.J. Geomorphometry: Progress, practice, and prospect. Z. Geomorphol. 1995, 101, 221–238.
2. Rasemann, S.J.; Schmidt, J.; Schrott, L.; Dikau, R. Geomorphometry in Mountain Terrain. In Geographic Information Science and Mountain Geomorphology; Springer Science & Business Media: Berlin, Germany, 2004; pp. 101–146.
3. Pike, R.J.; Evans, I.S.; Hengl, T. Geomorphometry: A Brief Guide, Geomorphometry—Concepts, Software, Applications; Hengl, T., Reuter, H.I., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 33, pp. 3–30.
4. Bishop, M.P.; James, L.A.; Shroder, J.F., Jr.; Walsh, S.J. Geospatial technologies and digital geomorphological mapping: Concepts, issues and research. Geomorphology 2012, 137, 5–26.  
5. Bishop, M.P.; Shroder, J.F., Jr. GIScience and mountain geomorphology: Overview, feedbacks, and research directions. In Geographic Information Science and Mountain Geomorphology; Springer Science & Business Media: Berlin, Germany, 2004.
6. Bouchet, P.J.; Meeuwig, J.J.; Salgado Kent, C.P.; Letessier, T.B.; Jenner, C.K. Topographic determinants of mobile vertebrate predator hotspots: current knowledge and future directions. Biol. Rev. 2015, 90, 699–728.
7. Lecours, V.; Dolan, M.F.J.; Micallef, A.; Lucieer, V.L. A review of marine geomorphometry, the quantitative study of the seafloor. Hydrol. Earth Syst. Sci. 2016, 20, 3207–3244. 
8. Lecours, V.; Lucieer, V.; Dolan, M.F.J.; Micallef, A. An ocean of possibilities: Applications and challenges of marine geomorphometry. In Geomorphometry for Geosciences; Jasiewicz, J., Zwoli´ nski, Z., Mitasova, H., Hengl, T., Eds.; Adam Mickiewicz University in Pozna´ n—Institute of Geoecology and Geoinformation: Poznan, Poland; pp. 23–26.
9. Lecours, V.; Dolan, M.; Micallef, A.; Lucieer, V. Geomorphometry in marine habitat mapping: Lessons learned from the past 10 years of applications. In Proceedings of the 15th International Symposium GeoHab, Winchester, UK, 2–6 May 2016; 2016.
10. Lecours, V.; Lucieer, L.; Dolan, M.F.J.; Micallef, A. Recent and future trends in marine geomorphometry. In Proceedings of the Geomorphometry 2018, Boulder, CO, USA, 13–17 August 2018; pp. 1–4.
11. Lundblad, E.R.; Wright, D.J.; Miller, J.; Larkin, E.M.; Rinehart, R.; Naar, D.F.; Donahue, B.T.; Anderson, S.M.; Battista, T. A Benthic Terrain Classification Scheme for American Samoa. Mar. Geodesy 2006, 29, 98–111.
12. Micallef, A.; Lecours, V.; Dolan, M.F.J.; Lucieer, V.L. Marine geomorphometry: Overview and opportunities. In Proceedings of the EGU General Assembly 2016, Vienna, Austria, 17–22 April 2016.
13. Wilson, M.; O’Connell, B.; Brown, C.; Guinan, J.C.; Grehan, A.J. Multiscale terrain analysis of multibeamى bathymetry data for habitat mapping on the continental slope. Mar. Geodesy 2007, 30, 3–35.
14. Walbridge, S.; Slocum, N.; Pobuda, M.; Wright, D. Unified Geomorphological Analysis Workflows with Benthic Terrain Modeler. Geosciences 2018, 8, 94.
15. Linklater, M.; Hamylton, S.; Brooke, B.; Nichol, S.; Jordan, A.; Woodroffe, C. Development of a Seamless, High-Resolution Bathymetric Model to Compare Reef Morphology around the Subtropical Island Shelves of Lord Howe Island and Balls Pyramid, Southwest Pacific Ocean. Geosciences 2018, 8, 11. 
16. Stumpf, R.P. Retrospective and future studies of coastal water clarity and sediment loads. In Proceedings of the Third Thematic Conference on Remote Sensing for Marine and Coastal Environments, Seattle, WA, USA, 18–20 September 1995; pp. 376–377.
17. Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259.
18. Traganos, D.; Reinartz, P. Mapping Mediterranean seagrasses with Sentinel-2 imagery. Mar. Pollut. Bull. 2018, 134, 197–209. 
19. Hodúl, M.; Bird, S.; Knudby, A.; Chénier, R. Satellite derived photogrammetric bathymetry. ISPRS J. Photogramm. Remote Sens. 2018, 142, 268–277. 
20. Mayer, L.; Jakobsson, M.; Allen, G.; Dorschel, B.; Falconer, R.; Ferrini, V.; Lamarche, G.; Snaith, H.; Weatherall, P. The Nippon Foundation—GEBCO Seabed 2030 Project: The Quest to See the World’s Oceans Completely Mapped by 2030. Geosciences 2018, 8, 63. 
21. Di Stefano, M.; Mayer, L. An Automatic Procedure for the Quantitative Characterization of Submarine Bedforms. Geosciences 2018, 8, 28. 
22. Calder, B.R. Automatic statistical processing of multibeam echosounder data. Int. Hydrogr. Rev. 2003, 4, 53–68.
23. Zimmermann, M.; Prescott, M. Bathymetry and Canyons of the Eastern Bering Sea Slope. Geosciences 2018, 8, 184. 
24. Bourguignon, S.; Bastos, A.; Quaresma, V.; Vieira, F.; Pinheiro, H.; Amado-Filho, G.; de Moura, R.; Teixeira, J. Seabed Morphology and Sedimentary Regimes defining Fishing Grounds along the Eastern Brazilian Shelf. Geosciences 2018, 8, 91. 
25. Goswami, A.; Hinnov, L.; Gnanadesikan, A.; Young, T. Realistic Paleobathymetry of the Cenomanian–Turonian (94 Ma) Boundary Global Ocean. Geosciences 2018, 8, 21. 
26. Porskamp, P.; Rattray, A.; Young, M.; Ierodiaconou, D. Multiscale and Hierarchical Classification for Benthic Habitat Mapping. Geosciences 2018, 8, 119. 
27. Ryabchuk, D.; Sergeev, A.; Krek, A.; Kapustina, M.; Tkacheva, E.; Zhamoida, V.; Budanov, L.; Moskovtsev, A.;
Danchenkov, A. Geomorphology and Late Pleistocene–Holocene Sedimentary Processes of the Eastern Gulf of Finland. Geosciences 2018, 8, 102. 
28. Lecours, V.; Devillers, R.; Edinger, E.N.; Brown, C.J.; Lucieer, V.L. Influence of artefacts in marine digital terrain models on habitat maps and species distribution models: A multiscale assessment. Remote Sens. Ecol. Conserv. 2017, 3, 232–246. 
29. Lecours, V.; Devillers, R.; Lucieer, V.L.; Brown, C.J. Artefacts in marine digital terrain models: A multiscale analysis of their impact on the derivation of terrain attributes. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5391–5406. 
30. Hughes Clarke, J. The Impact of Acoustic Imaging Geometry on the Fidelity of Seabed Bathymetric Models. Geosciences 2018, 8, 109. 
31. Spina, R. The pockmark stars: Radial structures in the seabed surrounding the Hawaii Islands. J. Environ. Geol. 2017, 1, 33–50. 
32. Diesing, M.; Thorsnes, T. Mapping of Cold-Water Coral Carbonate Mounds Based on Geomorphometric Features: An Object-Based Approach. Geosciences 2018, 8, 34. 
33. Masetti, G.; Mayer, L.; Ward, L. A Bathymetry- and Reflectivity-Based Approach for Seafloor Segmentation. Geosciences 2018, 8, 14.
34. Jasiewicz, J.; Stepinski, T.F. Geomorphons-a pattern recognition approach to classification and mapping of landforms. Geomorphology 2012, 182, 147–156. 
35. Gardner, J. The Morphometry of the Deep-Water Sinuous Mendocino Channel and the Immediate Environs, Northeastern Pacific Ocean. Geosciences 2017, 7, 124.
36. Gafeira, J.; Dolan, M.; Monteys, X. Geomorphometric Characterization of Pockmarks by Using a GIS-Based Semi-Automated Toolbox. Geosciences 2018, 8, 154.
37. Sánchez-Guillamón, O.; Fernández-Salas, L.; Vázquez, J.-T.; Palomino, D.; Medialdea, T.; López-González, N.; Somoza, L.; León, R. Shape and Size Complexity of Deep Seafloor Mounds on the Canary Basin (West to Canary Islands, Eastern Atlantic): A DEM-Based Geomorphometric Analysis of Domes and Volcanoes. Geosciences 2018, 8, 37. 
38. Greene, H.; Cacchione, D.; Hampton, M. Characteristics and Dynamics of a Large Sub-Tidal Sand Wave Field—Habitat for Pacific Sand Lance (Ammodytes personatus), Salish Sea,Washington, USA. Geosciences 2017, 7, 107. 
39. Picard, K.; Radke, L.; Williams, D.; Nicholas, W.; Siwabessy, P.; Howard, F.; Gafeira, J.; Przeslawski, R.; Huang, Z.; Nichol, S. Origin of High Density Seabed Pockmark Fields and Their Use in Inferring Bottom Currents. Geosciences 2018, 8, 195.
40. Maleika, W.; Koziarski, M.; Forczma´ nski, P. A Multiresolution Grid Structure Applied to Seafloor Shape Modeling. ISPRS Int. J. Geo-Inf. 2018, 7, 119.
41. Holland, M.; Hoggarth, A. Hydrographic processing considerations in the big data age: A focus on techonolgy trends in ocean and coastal surveys. IOP Conf. Ser.: Earth Environ. Sci. 2016, 34, 012016.

Full Text


download    Click here  or  click here


ليست هناك تعليقات:

إرسال تعليق

آخرالمواضيع






جيومورفولوجية سهل السندي - رقية أحمد محمد أمين العاني

إتصل بنا

الاسم

بريد إلكتروني *

رسالة *

Related Posts Plugin for WordPress, Blogger...

آية من كتاب الله

الطقس في مدينتي طبرق ومكة المكرمة

الطقس, 12 أيلول
طقس مدينة طبرق
+26

مرتفع: +31° منخفض: +22°

رطوبة: 65%

رياح: ESE - 14 KPH

طقس مدينة مكة
+37

مرتفع: +44° منخفض: +29°

رطوبة: 43%

رياح: WNW - 3 KPH

تنويه : حقوق الطبع والنشر


تنويه : حقوق الطبع والنشر :

هذا الموقع لا يخزن أية ملفات على الخادم ولا يقوم بالمسح الضوئ لهذه الكتب.نحن فقط مؤشر لموفري وصلة المحتوي التي توفرها المواقع والمنتديات الأخرى . يرجى الاتصال لموفري المحتوى على حذف محتويات حقوق الطبع والبريد الإلكترونيإذا كان أي منا، سنقوم بإزالة الروابط ذات الصلة أو محتوياته على الفور.

الاتصال على البريد الإلكتروني : هنا أو من هنا