Gullies of two Hungarian regions – a case study
Gergely JAKAB1 , Balázs MADARÁSZ1 , Anna ŐRSI1 , Zoltán SZALAI1 and Ádám KERTÉSZ1
Geographical Research Institute Hungarian Academy of Sciences, H-1112 Budaörsi út 45. Budapest, Hungary, e-mail: jakabg@mtafk i.hu
Abstract
Gully erosion plays a decisive role in removing the fertile layer of the soil and it has an important long term effect in relief formation. The objective of this paper is to compare gully development and distribution in two pilot areas in Hungary and to reveal the factors controlling gully formation. The pilot areas are natural micro-regions, i.e. the Börzsöny Mountains and the Zselic hills. The results presented in this paper are based on the data of a nation-wide gully cadastre recently under compilation by the authors. The cadastre contains the gullies shown on digital maps (1: 10,000), gully lengths, mean gradients, land use and main properties of parent materials and soils. The results point to the development and formation of signifi cantly different gullies in the pilot areas as a consequence of different environmental conditions. The most important result is the introduction of the concept of equivalent gully length characterizing the gullies of the given category. Topography is the main driving force in gully formation followed by land use type, parent rock and soil properties.
Keywords: gully erosion, gully cadastre, Zselic, Börzsöny
Introduction
Soil erosion is one of the most important agents in contemporary landscape formation. This statement applies also for the subhumid regions of Central Europe. Soil erosion attacks the uppermost, fertile soil layer and the eroded soil contains valuable nutrients (Farsang, A. et al. 2011; Borcsik, Z. et al. 2011). If the eroded soil will be transported into lakes eutrophication will be accelerated (Csathó, P. et al. 2007). Sheet erosion processes affect extended areas, the result is, however, a relatively slow change in topography. Gully erosion appears on relatively limited portions of the surface but it leads to the removal of a huge amount of soil and it makes rapid and remarkable change in surface topography (Pécsi, M. 1955; Kertész, Á. 2009). Both sheet and gully erosion contribute to relief formation (Jakab, G. et al. 2009). Gully erosion is a threshold henomenon (Poesen, J. et al. 2003) but the identifi cation of the threshold value is a very complex procedure (Poesen, J. et al. 2003; Kirkby, M. and Bull, L. 2000). The occurrence of gully, or sheet erosion may change also periodically. The glacial periods are presumed to have been ruled by gully erosion while the interglacials characterized by sheet erosion (Pécsi, M. 1997). Climate is not the only environmental condition that regulates soil erosion (Kertész, Á. 2006; Smolska, E. 2007) the role of soil properties, parent material (Buzek, L. 2007), topography and land use is also important (Kertész, Á. 2008). Many authors refer to the signifi cance of land use changes (Grace, J.M. 2004; Gábris, Gy. et al. 2003; Galang, M.A. et al. 2007; Centeri, Cs. et al. 2009). The development of an already incised gully can only be stopped by radical changes and it is extremely expensive to remove it from the landscape (Kirkby, M. and Bracken, L.J. 2009
Gullies develop mainly on loose, unconsolidated sediments such as loess and loess-like deposits (Poesen, J. et al. 2003; Zglobicki, W. and BaranZglobicka, B. 2011) as well as on marine sediments in the Mediterranean (Poesen, J. et al. 2006), and on sandstones (Hegedűs, K. et al. 2008) etc. Gullies developed on unconsolidated volcanic rocks represent a special type (Pintér, Z. et al. 2009). An example is the badland developed on rhyolite tuff in Kazár, Hungary (Horváth, G. et al. 2010).
Gully erosion has received less attention due to the complexity and dif- fi culty of its investigation (Valentine, C. et al. 2005), nevertheless adequate gully susceptibility prediction would be necessary to control soil loss (Conforti, M. et al. 2010). There is no soil type, rock type, land use or topography which could alone launch gully initiation. The interaction of the factors controlling gully erosion is needed for gully formation (Muńoz-Robles, C. et al. 2010).
The aim of this study is to identify the spatial properties of gully erosion in two pilot areas in Hungary with the analysis of the recently compiled gully cadastre. The hypothesis to be tested is whether different environmental conditions (topography, land use, parent material and soil) generate distinct spatial patterns and distributions of gully systems. An additional goal is to identify the relationship between gully formation and land use change .
Conclusions
Two pilot areas were analyzed and compared in detail. As it was expected the gullies and gully systems of the pilot areas were different. It is diffi cult to assess the effects of the environmental factors because they are interrelated, not independent from each other, i.e. they constitute a complex system and this system as a whole controls gully development. Being aware of this statement it is assumed that soil properties exert the smallest impact on gully development. This conclusion is confirmed by the high share of gullies formed on Luvisol and it is known that Luvisol is resistant to gully erosion. The role of parent material in the process is very important. High gully erosion rate can be found on loess as the parent material. Relief and land use play the most important role in gully development. The effects of these two environmental factors cannot be treated separately, except in very small areas. In accordance with the results of Menéndez-Duarte, R., et al. (2007) the effect of topography is more decisive of the two because it controls also land use. The methodology of gully identifi cation is not perfect as such formation is classified as a gully in the forest even if a considerable part of its catchment is on arable land. The method applied in the paper for the identifi cation of gully gradient is suitable in small scale only.
In the Börzsöny Mountains very deep gullies can be found that have developed into valleys in some cases. They must be of Pleistocene, early Holocene origin as they are deeply cut into hard rock. The analysis of the two pilot area revealed important characteristics of the gullies and pointed to some features of gully development. Future research will be devoted to the classified survey of gullies in the country (i.e. a detailed country-wide survey of ephemeral gullies).
Acknowledgement: Research activities reported in this paper were funded by the Hungarian Scientifi c Research Fund (OTKA K 76434) and the support is gratefully acknowledged here. The data input was carried out by Varga, E. and this activity is also gratefully acknowledged by the authors.
REFERENCES
Borcsik, Z., Farsang, A., Barta, K. and Kitka, G. 2011. Humuszanyagok mennyiségi és minőségi eróziójának mérése a Tolna megyei Szálka település mellett i vízgyűjtőn. (Measurement of qualitative and quantitative caracteristics of soil erosion in a catchment, near Szálka, Tolna County.) Talajvédelem (Supplement) 127–137.
Buzek, L. 2007. Water erosion in the watershed of the Upper Ostravice river from 1976 to 2000. Moravian Geographical Reports 15. (4): 2–14.
Büttner, G., Feranec, J. and Jaffrain, G. 2002. Corine land cover update 2000. European Environment Agency, Copenhagen, Denmark Centeri, Cs. 2002. The role of vegetation cover in the control of soil erosion on the Tihany peninsula Acta Botanica Hungarica 44. (3–4): 285–295.
Centeri, Cs., Herczeg, E., Vona, M., Balázs, K. and Penksza, K. 2009. The effects of landuse change on plant-soil-erosion relations, Nyereg Hill, Hungary. Journal of Plant Nutrition and Soil Science 172. (4): 586–592.
Conforti, M., Aucelli, P., Robustelli G. and Scarciglia, F. 2011. Geomorphology and GIS analysis for mapping gully erosion susceptibility in the Turbolo stream catchment (Northern Calabria, Italy) Natural Hazards 56. 881–898.
Csathó, P., Sisák, I., Radimszky, L., Lushaj, S., Spiegel, H., Nikolova, M. T., Nikolov, N., Čermák, P., Klir, J., Astover, A., Karklins, A., Lazauskas, S., Kopiński, J., Hera, C., Dumitru, E., Manojlovic, M., Bogdanović, D., Torma, S., Leskošek, M. and Khristenko, A. 2007. Agriculture as a source of phosphorus causing eutrophication in Central and Eastern Europe. Soil Use and Management 23. 36–56.
Dövényi, Z. (ed.) 2010. Magyarország kistájainak katasztere. (Inventory of Natural Micro-regions of Hungary.) Budapest, Geographical Research Institute HAS, 876 p.
Farsang, A., Kitka, G. and Barta, K. 2011. Mezőgazdaságilag hasznosított kisvízgyűjtők talajerózióhoz kötődő elemdinamikája. (Element dinamics of cultivated watersheds related to soil erosion) Talajvédelem (Supplement) 339–349.
Gábris, Gy., Kertész, Á. and Zámbó, L. 2003. Land use change and gully formation over the last 200 years in a hilly catchment. Catena 50. 151–164.
Galang, M.A., Markewitz, D., Morris, L.A. and Bussell, P. 2007. Land use change and gully erosion in the Piedmont region of South Carolina. Journal of Soil and Water Conservation 62. 122–129.
Grace, J.M. 2004. Soil erosion following forest operations in the Southern Piedmont of central Alabama. Journal of Soil and Water Conservation 59. 180–185.
Gyenizse, P., Elekes, T., Nagyváradi, L. and Pirkhoffer, E. 2008. A tájhasználat-változás értékelése a Zselicben, az Árpád-kortól a 20. század végéig. (Assessment of ladscape change in the Zselic micro-region from the 12th to 20th century.) Földrajzi Közlemények 132. (1): 83–88.
Hegedűs, K., Horváth, G., Karancsi, Z. and Prakfalvi, P. 2008. Eróziós vizsgálatok a Medves-vidék egy homokkőszurdokában. (Soil erosion investigations in a sandstone gully of the Medves Area.) Földrajzi Közlemények 132. (2): 157–173.
Horváth, G., Pintér, Z. and Prakfalvi, P. 2010. Erosional micro-, meso- and macroforms of the Medves Area with special respect to the development of the sandstone gorges. Budapest, Report for Hungarian Scientifi c Research Fund (OTKA). htt p://real.mtak.hu/2254/
Jakab, G., Madarász, B. and Szalai, Z. 2009. Gully- or sheet erosion? A case study at catchment scale. Hungarian Geographical Bulletin 58 (3): 151–161.
Jakab, G. 2006. A vonalas erózió megjelenésének formái és mérésének lehetőségei. (Gully types and posssibilities of their investigation.) Hungarian Journal of Landscape Ecology 4. (1): 17–33.
Jakab, G. 2008. Természeti tényezők hatása a talajpusztulás vonalas formáinak kialakulására (The in- fl uence of environmental conditions on gully development). Budapest, Geographical Research Institute HAS. 109 p. (PhD dissertation)
Jakab, G., Kertész, Á. and Papp, S. 2005. Az árkos erózió vizsgálata a Tetves-patak vízgyűjtő- jén. (Gully erosion in the Tetves catchment.) Földrajzi Értesítő/Hungarian Geographical Bulletin 54. (1–2): 149–165.
Jakab, G., Kertész, Á. and Szalai, Z. 2010b. Scale dependence of gully investigations. Hungarian Geographical Bulletin 59 (3): 319–330.
Jakab, G., Kertész, Á., Madarász, B., Ronczyk, L. and Szalai, Z. 2010a. Az erózió és a domborzat kapcsolata szántóföldön, a tolerálható talajveszteség tükrében. (The role of relief in soil erosion with special emphasis on tolerable soil loss.) Hungarian Journal of Landscape Ecology 8. (1): 35–45.
Kapronczay, J 1966. Adatok a Zselic éghajlatához. (Contributions to the climate of Zselic.) Földrajzi Értesítő/ Hungarian Geographical Bulletin 15. (2): 179–197.
Kapronczay, J. 1965. Adatok a Zselic geomorfológiájához. (Data to the geomorphology of Zselic.) Földrajzi Értesítő/Hungarian Geographical Bulletin 14. (1): 29–45.
Karátson, D. 2007. A Börzsönytől a Hargitáig (From Börzsöny to Harghita). Budapest, Typotex, 463 p.
Kertész, Á. 2006. Az éghajlati tényezők szerepe a lineáris erózióban. (The role of climatic conditions in rill and gully erosion.) Földrajzi Közlemények 130. (3–4): 115–122.
Kertész, Á. 2008. Water and wind erosion in Hungary. In Dimensions and trends in Hungarian geography. Eds. Kertész, Á. and Kovács, Z. Studies in Hungarian Geography 33. Budapest, Geographical Research Institute HAS. 47–54.
Kertész, Á. 2009. Environmental conditions of gully erosion in Hungary. Hungarian Geographical Bulletin 58. (2): 79–89.
Kirkby, M.J. and Bracken, L.J. 2009. Gully processes and gully dynamics. Earth Surface Processes and Landforms 34. 1841–1851.
Kirkby, M.J. and Bull, L.J. 2000. Some factors controlling gully growth in fine-grained sediments: a model applied to southeast Spain. Catena 40. 127–146.
Láng, S. 1955. A Mátra és a Börzsöny természeti földrajza (Physical geography of the Mátra and Börzsöny mountains). Budapest, Akadémiai Kiadó, 512 p.
Lóczy, D. and Gyenizse, P. 2003. A dunántúli dombságok változó hasznosítása és értéke a Zselic példáján. (Varying land uses and changing values of Transdanubian hilly countries on the example of the Zselic micro region.) In A Dunántúl és a Kisalföld történeti földrajza. Eds. Frisnyák, S. and Tóth, J. Nyíregyháza–Pécs, Nyíregyházi Főiskola Földrajz Tanszéke – PTE Földrajzi Intézete, 165–180.
Madarász, B. 2009. A magyarországi erubáz talajok komplex talajtani vizsgálata, különös tekintettel agyagásvány-összetételükre. (Complex pedologic analysis of the Hungarian erubáz soils with special reference to their clay-mineral composition.) Budapest, Eötvös Loránd University, 134 p. (PhD dissertation).
Madarász, B. and Jakab, G. 2009. Volcanic soils of the High Börzsöny and their relationship with geomorphological conditions. Hungarian Geographical Bulletin 58. (4): 227–242.
Menéndez-Duarte, R., Marquínez, J., Fernández-Menéndez, S. and Santos, R. 2007. Incised channels and gully erosion in Northern Iberian Peninsula: Controls and geomorphic sett ing. Catena 71. 267–278.
Muńoz-Robles, C., Reid, N., Frazier P., Tighe, M., Briggs, S. and Wilson, B. 2010. Factors related to gully erosion in woody encroachment in south-eastern Australia. Catena 83. 148–157.
Nachtergaele, J. and Poesen, J. 2002. Spatial and temporal variations in resistance of loess-derived soils to ephemeral gully erosion. European Journal of Soil Science 53. (3): 449– 463.
Pécsi, M. 1991. Geomorfológia és domborzatminősítés. (Geomorphology and relief classifi cation.) Budapest, Geographical Research Institute HAS. 296 p.
Pécsi, M. 1997. Szerkezeti és váztalaj képződés Magyarországon. (Effect of the Quaternary periglacial processes and structural soil formation in Hungary) Budapest, Geographical Research Institute HAS. 99 p.
Pécskay, Z., Lexa, J., Szakács, A., Balogh, K., Seghedi, I., Konecny, V., Kovacs, M., Márton, E., Kaliciak, M., Széky-Fux, V., Póka, T., Gyarmati, P., Edelstein, O., Rosu, É. and Zec, B. 1995. Space and time distribution of Neogene-Quaternary volcanism in the Carpatho–Pannonian Region. Acta Vulcanologica 7. (2): 15–28.
Pintér, Z., Prakfalvi, P., Karancsi, Z. and Horváth, G. 2009. Medves-vidéki riolitt ufák eróziós formakincse. (Erosional forms on rhyolite tuffs in Medves Region.) Földrajzi Közlemények 133 (3): 219–238.
Poesen, J., Nachtergaele, J., Verstraeten, G. and Valentin, C. 2003. Gully erosion and environmental change: importance and research needs. Catena. 50. 91–133.
Poesen, J., Vanwalleghem, T., de Vente, J., Knapen, A., Verstraeten, G. and MartínezCasanovas, J. 2006. Gully erosion in Europe. In Soil erosion in Europe. Eds. Bordman, J. and Poesen, J. New Jersey, John Wiley and Sons, 515–536.
Rabus, B., Eineder, M., Roth, A. and Bamler, R. 2003. The shuttle radartopography missiona new class of digital elevation models acquired by spaceborne radar, Photogrammetric Engineering and Remote Sensing 57. 241–262.
RISSAC 1991. htt p://www.mta-taki.hu/hu/osztalyok/gis-labor/agrotopo
Sebe, K., Csillag, G. and Konrád, Gy. 2008. The role of neotectonics in fl uvial landscape development in the Western Mecsek Mountains and related foreland basins (SE Transdanubia, Hungary) Geomorphology 102 (1): 55–67.
Smolska, E. 2007. Extreme Rainfalls and their Impact on Slopes — Evaluation Based on Soil Erosion Measurements (As Exemplified by the Suwałki Lakeland, Poland) Geographia Polonica 80. (2): 151–164.
Valentin, C., Poesen, J. and Li, Y. 2005. Gully erosion: impacts, factors and control. Catena 63. 132–153.
Vanwalleghem, T., Eeckhaut, Van Den M., Poesen, J., Deckers, J., Nachtergaele, J., Oost, Van K. and Slenters, C. 2003. Characteristics and controlling factors of old gullies under forest in a temperate humid climate: a case study from the Meerdaal Forest (Central Belgium). Geomorphology 56. (1–2): 15–29.
Zglobicki, W. and Baran–Zglobicka, B. 2011. Gullies as an indicator of human impact on loess landscape (Case study: North Western Part of Lublin Upland, Poland) Zeitschrift für Geomorphologie 55. 119–137.
Full Text
ليست هناك تعليقات:
إرسال تعليق